Advanced Search
Turn off MathJax
Article Contents
LIAO Xi, CHEN Xinrui, WANG Yang, REN Minghao, CHEN Qianbin. Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230706
Citation: LIAO Xi, CHEN Xinrui, WANG Yang, REN Minghao, CHEN Qianbin. Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT230706

Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz

doi: 10.11999/JEIT230706
Funds:  The National Natural Science Foundation of China (62271095, 62171071), The Natural Science Foundation of Chongqing (cstc2021jcyjmsxmX0634, CSTB2022NSCQ-MSX1125), The Natural Science Foundation Innovation and Development Joint Fund Project of Chongqing (CSTB2022NSCQ-LZX0073)
  • Received Date: 2023-07-15
  • Rev Recd Date: 2024-04-10
  • Available Online: 2024-05-04
  • To achieve an accurate characterization and thorough understanding of the millimeter-Wave (mmWave) communication channel propagation mechanism, precise characterization of diffuse scattering propagation and polarization is crucial. These aspects are also indispensable for the development of a high-precision mmWave channel model. In response to the insufficient characterization of diffuse scattering propagation and polarization caused by building materials in the mmWave frequency bands, a novel diffuse scattering depolarization modeling method based on effective roughness theory is presented in this paper. Initially, the electric field of the diffuse scattering radiation produced by the rough surface of building materials is decomposed along the polarization dimension of the electromagnetic wave. Subsequently, the depolarization coefficient is introduced to establish the propagation model. The paper investigates the diffuse scattering propagation and polarization characteristics, encompassing the power angle spectrum, depolarization coefficient, and cross-polarization discrimination ratio, by utilizing measured data of typical materials in the 40~50 GHz frequency range. The obtained results validate that the proposed model effectively captures the polarization characteristics of building materials with both rough and smooth surfaces. The achieved depolarization conversion rates are 39% and 4%, respectively.
  • loading
  • [1]
    MI Hang, AI Bo, HE Ruisi, et al. Multi-scenario millimeter wave wireless channel measurements and sparsity analysis[J]. China Communications, 2022, 19(11): 16–31. doi: 10.23919/JCC.2022.11.002.
    [2]
    ZHANG Hequn, ZHANG Yue, COSMAS J, et al. mmWave indoor channel measurement campaign for 5G new radio indoor broadcasting[J]. IEEE Transactions on Broadcasting, 2022, 68(2): 331–344. doi: 10.1109/TBC.2021.3131864.
    [3]
    PASIC F, SCHÜTZENHÖFER D, JIROUSEK E, et al. Comparison of Sub 6 GHz and mmWave wireless channel measurements at high speeds[C]. 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022: 1–5. doi: 10.23919/EuCAP53622.2022.9769375.
    [4]
    LI Zeyang, HU Haonan, ZHANG Jiliang, et al. Coverage analysis of multiple transmissive RIS-aided outdoor-to-indoor mmWave networks[J]. IEEE Transactions on Broadcasting, 2022, 68(4): 935–942. doi: 10.1109/TBC.2022.3196169.
    [5]
    ZELENBABA S, RAINER B, HOFER M, et al. Multi-node vehicular wireless channels: Measurements, large vehicle modeling, and hardware-in-the-loop evaluation[J]. IEEE Access, 2021, 9: 112439–112453. doi: 10.1109/ACCESS.2021.3100676.
    [6]
    PASIC F, PRATSCHNER S, LANGWIESER R, et al. High-mobility wireless channel measurements at 5.9 GHz in an urban environment[C]. 2022 International Balkan Conference on Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022: 100–104. doi: 10.1109/BalkanCom55633.2022.9900633.
    [7]
    GURRIERI L E, WILLINK T J, PETOSA A, et al. Characterization of the angle, delay and polarization of multipath signals for indoor environments[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2710–2719. doi: 10.1109/TAP.2008.927507.
    [8]
    HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: Wiley-IEEE Press, 1993.
    [9]
    YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693.
    [10]
    廖珊. 基于FDTD的多层随机粗糙面散射场研究[D]. [硕士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.

    LIAO Shan. Study on the scattering field of random rough surface based on FDTD[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.
    [11]
    VITUCCI E M, MANI F, DEGLI-ESPOSTI V, et al. Polarimetric properties of diffuse scattering from building walls: Experimental parameterization of a ray-tracing model[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2961–2969. doi: 10.1109/TAP.2012.2194683.
    [12]
    GOULIANOS A A, FREIRE A L, BARRATT T, et al. Measurements and characterisation of surface scattering at 60 GHz[C]. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFall.2017.8288373.
    [13]
    FREIRE A L, PELHAM T, KONG Di, et al. Polarimetric diffuse scattering channel measurements at 26 GHz and 60 GHz[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 2018: 210–214. doi: 10.1109/PIMRC.2018.8581035.
    [14]
    CUINAS I, SANCHEZ M G, and ALEJOS A V. Depolarization due to scattering on walls in the 5 GHz band[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1804–1812. doi: 10.1109/TAP.2009.2019694.
    [15]
    YANG Ying, CHEN Kunshan, YANG Xiaofeng, et al. Depolarized scattering of rough surface with dielectric inhomogeneity and spatial anisotropy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 47–59. doi: 10.1109/TGRS.2020.2999543.
    [16]
    BENEDETTO S and POGGIOLINI P. Theory of polarization shift keying modulation[J]. IEEE Transactions on Communications, 1992, 40(4): 708–721. doi: 10.1109/26.141426.
    [17]
    罗健桂. 典型建筑材料在毫米波频段下的电磁特性研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.

    LUO Jiangui. Electromagnetic property of typical building materials at millimeter-wave band[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.
    [18]
    田海阔. 基于测量的毫米波漫散射传播模型参数化研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.

    TIAN Haikuo. Research on measurement based diffuse scattering propagation model parameterization at mmWave frequencies[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.
    [19]
    ITU. ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. Geneva: ITU, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (84) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return