Citation: | LIAO Xi, CHEN Xinrui, WANG Yang, REN Minghao, CHEN Qianbin. Diffuse Scattering Propagation and Depolarization Modeling for B5G Millimeter-wave Communications at 40~50 GHz[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2425-2433. doi: 10.11999/JEIT230706 |
[1] |
MI Hang, AI Bo, HE Ruisi, et al. Multi-scenario millimeter wave wireless channel measurements and sparsity analysis[J]. China Communications, 2022, 19(11): 16–31. doi: 10.23919/JCC.2022.11.002.
|
[2] |
ZHANG Hequn, ZHANG Yue, COSMAS J, et al. mmWave indoor channel measurement campaign for 5G new radio indoor broadcasting[J]. IEEE Transactions on Broadcasting, 2022, 68(2): 331–344. doi: 10.1109/TBC.2021.3131864.
|
[3] |
PASIC F, SCHÜTZENHÖFER D, JIROUSEK E, et al. Comparison of Sub 6 GHz and mmWave wireless channel measurements at high speeds[C]. 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 2022: 1–5. doi: 10.23919/EuCAP53622.2022.9769375.
|
[4] |
LI Zeyang, HU Haonan, ZHANG Jiliang, et al. Coverage analysis of multiple transmissive RIS-aided outdoor-to-indoor mmWave networks[J]. IEEE Transactions on Broadcasting, 2022, 68(4): 935–942. doi: 10.1109/TBC.2022.3196169.
|
[5] |
ZELENBABA S, RAINER B, HOFER M, et al. Multi-node vehicular wireless channels: Measurements, large vehicle modeling, and hardware-in-the-loop evaluation[J]. IEEE Access, 2021, 9: 112439–112453. doi: 10.1109/ACCESS.2021.3100676.
|
[6] |
PASIC F, PRATSCHNER S, LANGWIESER R, et al. High-mobility wireless channel measurements at 5.9 GHz in an urban environment[C]. 2022 International Balkan Conference on Communications and Networking (BalkanCom), Sarajevo, Bosnia and Herzegovina, 2022: 100–104. doi: 10.1109/BalkanCom55633.2022.9900633.
|
[7] |
GURRIERI L E, WILLINK T J, PETOSA A, et al. Characterization of the angle, delay and polarization of multipath signals for indoor environments[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2710–2719. doi: 10.1109/TAP.2008.927507.
|
[8] |
HARRINGTON R F. Field Computation by Moment Methods[M]. Piscataway: Wiley-IEEE Press, 1993.
|
[9] |
YEE K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693.
|
[10] |
廖珊. 基于FDTD的多层随机粗糙面散射场研究[D]. [硕士论文], 电子科技大学, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.
LIAO Shan. Study on the scattering field of random rough surface based on FDTD[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020. doi: 10.27005/d.cnki.gdzku.2020.003214.
|
[11] |
VITUCCI E M, MANI F, DEGLI-ESPOSTI V, et al. Polarimetric properties of diffuse scattering from building walls: Experimental parameterization of a ray-tracing model[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2961–2969. doi: 10.1109/TAP.2012.2194683.
|
[12] |
GOULIANOS A A, FREIRE A L, BARRATT T, et al. Measurements and characterisation of surface scattering at 60 GHz[C]. IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada, 2017: 1–5. doi: 10.1109/VTCFall.2017.8288373.
|
[13] |
FREIRE A L, PELHAM T, KONG Di, et al. Polarimetric diffuse scattering channel measurements at 26 GHz and 60 GHz[C]. 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 2018: 210–214. doi: 10.1109/PIMRC.2018.8581035.
|
[14] |
CUINAS I, SANCHEZ M G, and ALEJOS A V. Depolarization due to scattering on walls in the 5 GHz band[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1804–1812. doi: 10.1109/TAP.2009.2019694.
|
[15] |
YANG Ying, CHEN Kunshan, YANG Xiaofeng, et al. Depolarized scattering of rough surface with dielectric inhomogeneity and spatial anisotropy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 47–59. doi: 10.1109/TGRS.2020.2999543.
|
[16] |
BENEDETTO S and POGGIOLINI P. Theory of polarization shift keying modulation[J]. IEEE Transactions on Communications, 1992, 40(4): 708–721. doi: 10.1109/26.141426.
|
[17] |
罗健桂. 典型建筑材料在毫米波频段下的电磁特性研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.
LUO Jiangui. Electromagnetic property of typical building materials at millimeter-wave band[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.000983.
|
[18] |
田海阔. 基于测量的毫米波漫散射传播模型参数化研究[D]. [硕士论文], 重庆邮电大学, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.
TIAN Haikuo. Research on measurement based diffuse scattering propagation model parameterization at mmWave frequencies[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020. doi: 10.27675/d.cnki.gcydx.2020.001049.
|
[19] |
ITU. ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. Geneva: ITU, 2015.
|