Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
XU Yongjun, YANG Haoke, LI Guojun, CHEN Qianbin. Energy-efficient Optimization Algorithm in Multi-tag Wireless-powered Backscatter Communication Networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3492-3498. doi: 10.11999/JEIT210772
Citation: NI Gang, CHEN Ruihua, HE Chong, JIN Ronghong. Reconfigurable Backscattering Communication System Based on Time Modulation Technique[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2443-2451. doi: 10.11999/JEIT230700

Reconfigurable Backscattering Communication System Based on Time Modulation Technique

doi: 10.11999/JEIT230700
Funds:  The National Science and Technology Innovation 2030 Major Project (2022ZD0208601)
  • Received Date: 2023-07-12
  • Rev Recd Date: 2024-01-21
  • Available Online: 2024-02-27
  • Publish Date: 2024-06-30
  • In recent years, time-modulated array has aroused much attention due to its superior performance on vector control. Based on the time modulation method, a type of reconfigurable backscattering communication system based on time modulation technique is proposed in this paper. In backscattering node of the proposed system, multiple digital modulation symbols are mapped into the harmonic component of the control waveforms. The scattering or absorbing states of the incoming wave from the base station are then controlled by the designed waveforms. After the receiver samples the backscattering signal and extracts the control waveforms, the digital modulation symbols transmitted from the backscattering node can be recovered from the harmonic component with the Fourier transform. Simulation results demonstrate the performance of the harmonic demodulation methods and consistency with the theoretical values. Meanwhile, the reconfigurable backscattering transmitting experiments based on amplitude, phase shift keying and quadrature amplitude modulation demonstrate the feasibility of the proposed system and methods. In comparison, the proposed system has the characteristics of low power consumption, simple structure and reconfigurable digital modulation.
  • [1]
    SHANKS H E and BICKMORE R W. Four-dimensional electromagnetic radiators[J]. Canadian Journal of Physics, 1959, 37(3): 263–275. doi: 10.1139/p59-031.
    [2]
    FARZANEH S and SEBAK A R. Microwave sampling beamformer: Prototype verification and switch design[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 36–44. doi: 10.1109/TMTT.2008.2009080.
    [3]
    YAO Amin, WU Wen, and FANG Dagang. Single-sideband time-modulated phased array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 1957–1968. doi: 10.1109/TAP.2015.2406890.
    [4]
    LI Haotian, CHEN Yikai, and YANG Shiwen. Harmonic beamforming in antenna array with time-modulated amplitude-phase weighting technique[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(10): 6461–6472. doi: 10.1109/TAP.2019.2922815.
    [5]
    NI Gang, HE Chong, GAO Yanchang, et al. High-efficiency modulation and harmonic beam scanning in time-modulated array[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(1): 368–380. doi: 10.1109/TAP.2021.3119046.
    [6]
    NI Gang, HE Chong, and JIN Ronghong. An improved modulation module in time-modulated array[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(3): 561–565. doi: 10.1109/LAWP.2021.3138405.
    [7]
    罗玉川, 向磊, 高彦昌, 等. 时间调制阵列天线的非理想波形调制研究[J]. 电波科学学报, 2022, 37(3): 388–393. doi: 10.12265/j.cjors.2021148.

    LUO Yuchuan, XIANG Lei, GAO Yanchang, et al. Research on non-ideal waveform modulation of time modulation array antenna[J]. Chinese Journal of Radio Science, 2022, 37(3): 388–393. doi: 10.12265/j.cjors.2021148.
    [8]
    黎皓天, 陈益凯, 杨仕文. 2比特时间调制阵列的非理想特性建模研究[J]. 电波科学学报, 2022, 37(6): 925–932. doi: 10.12265/j.cjors.2022056.

    LI Haotian, CHEN Yikai, and YANG Shiwen. Modeling of nonideal characteristics in 2-bit time-modulated arrays[J]. Chinese Journal of Radio Science, 2022, 37(6): 925–932. doi: 10.12265/j.cjors.2022056.
    [9]
    ZHU Quanjiang, YANG Shiwen, YAO Ruilin, et al. Unified time- and frequency-domain study on time-modulated arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3069–3076. doi: 10.1109/TAP.2013.2253538.
    [10]
    MANEIRO-CATOIRA R, BRÉGAINS J C, GARCÍA-NAYA J A, et al. On the feasibility of time-modulated arrays for digital linear modulations: A theoretical analysis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6114–6122. doi: 10.1109/TAP.2014.2365827.
    [11]
    ZHU Quanjiang, YANG Shiwen, YAO Ruilin, et al. Directional modulation based on 4-D antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 621–628. doi: 10.1109/TAP.2013.2290122.
    [12]
    CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Hybrid directional modulation and beamforming for physical layer security improvement through 4-D Antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5903–5912. doi: 10.1109/TAP.2021.3060056.
    [13]
    ROCCA P, ZHU Quanjiang, BEKELE E T, et al. 4-D arrays as enabling technology for cognitive radio systems[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3): 1102–1116. doi: 10.1109/TAP.2013.2288109.
    [14]
    HE Chong, LIANG Xianling, ZHOU Bin, et al. Space-division multiple access based on time-modulated array[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 610–613. doi: 10.1109/LAWP.2014.2373431.
    [15]
    CHEN Qun, BAI Lin, HE Chong, et al. On the harmonic selection and performance verification in time-modulated array-based space division multiple access[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3244–3256. doi: 10.1109/TAP.2020.3037738.
    [16]
    SUDEVALAYAM S and KULKARNI P. Energy harvesting sensor nodes: Survey and implications[J]. IEEE Communications Surveys & Tutorials, 2011, 13(3): 443–461. doi: 10.1109/SURV.2011.060710.00094.
    [17]
    张倩倩, 王俊, 梁应敞. 面向6G的共生散射通信技术: 原理、方法与应用[J]. 中国科学:信息科学, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.

    ZHANG Qianqian, WANG Jun, and LIANG Yingchang. Symbiotic backscatter communications for 6G: Principles, approaches, and applications[J]. SCIENTIA SINICA Informationis, 2022, 52(8): 1393–1416. doi: 10.1360/SSI-2022-0153.
    [18]
    THOMAS S J, WHEELER E, TEIZER J, et al. Quadrature amplitude modulated backscatter in passive and semipassive UHF RFID systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(4): 1175–1182. doi: 10.1109/TMTT.2012.2185810.
    [19]
    CHO K and YOON D. On the general BER expression of one- and two-dimensional amplitude modulations[J]. IEEE Transactions on Communications, 2002, 50(7): 1074–1080. doi: 10.1109/TCOMM.2002.800818.
  • Cited by

    Periodical cited type(9)

    1. 欧丰林,林淑彬. 融合高斯混合模型和深度学习的目标跟踪. 吉林师范大学学报(自然科学版). 2020(01): 127-134 .
    2. 张明月,王静. 基于深度学习的交互似然目标跟踪算法. 计算机科学. 2019(02): 279-285 .
    3. 马义超,赵运基,张新良. 基于PCA初始化卷积核的CNN手写数字识别算法. 计算机工程与应用. 2019(13): 134-139 .
    4. 蔡楠,李萍. 基于KPCA初始化卷积神经网络的方法. 计算机技术与发展. 2019(07): 76-79 .
    5. 张烁,张荣. 基于卷积神经网络模型的手写数字辨识算法研究. 计算机应用与软件. 2019(08): 172-176+261 .
    6. 毕笃彦,王世平,刘坤,何林远. 基于并行映射卷积网络的超分辨率重建算法. 系统工程与电子技术. 2018(08): 1873-1880 .
    7. 韩东,王学军. 基于改进的卷积神经网络多姿态人脸识别研究. 吉林大学学报(信息科学版). 2018(05): 376-381 .
    8. 梁蒙蒙,周涛,张飞飞,杨健,夏勇. 卷积神经网络及其在医学图像分析中的应用研究. 生物医学工程学杂志. 2018(06): 977-985 .
    9. 樊养余,李祖贺,王凤琴,马江涛. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类. 电子与信息学报. 2017(01): 167-175 . 本站查看

    Other cited types(32)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (302) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return