Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
CHU Hongyun, PAN Xue, HUANG Hang, ZHENG Ling, YANG Mengyao, XIAO Ge. Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692
Citation: CHU Hongyun, PAN Xue, HUANG Hang, ZHENG Ling, YANG Mengyao, XIAO Ge. Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2506-2514. doi: 10.11999/JEIT230692

Full Channel Estimation for IRS-assisted Millimeter-wave Mobile Communication Systems Based on Fixed Point Deep Learning

doi: 10.11999/JEIT230692
Funds:  The National Natural Science Foundation of China (62102314), The 173 Program for Technology (2022-JCJQ-JJ-0730), The Natural Science Foundation of Shaanxi Province (2022JQ-635)
  • Received Date: 2023-07-12
  • Rev Recd Date: 2023-12-27
  • Available Online: 2024-02-21
  • Publish Date: 2024-06-30
  • Combining Intelligent Reflective Surface (IRS) with massive MIMO can guarantee and improve the performance of millimeter-wave communication systems. An adaptive full-channel estimation method is proposed for the Base Station (BS)-user direct-connect channel and user-IRS-BS reflective channel mixing scenario. First, auxiliary variables are introduced and atomic paradigms are used to correlate the sparse angle-domain subspaces of the direct-connect and reflective channels; then, the full-channel estimation problem is modeled as a continuous angle-domain sparse matrix reconstruction planning by using atomic paradigm minimization; and finally, a low-complexity problem solving algorithm based on the immovable-point deep learning network is designed. The algorithm can not only overcome the dependence of the nonlinear estimation operator on a priori knowledge in the traditional model-based solution method but also adaptively adjust the complexity of the algorithm according to the changes of the mobile scene. Simulation results show that the proposed algorithm can avoid the error propagation effect caused by the traditional time-division estimation strategy, and has higher estimation accuracy and lower complexity.
  • loading
  • [1]
    DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [2]
    SCHROEDER R, HE Jiguang, BRANTE G, et al. Two-stage channel estimation for hybrid RIS assisted MIMO systems[J]. IEEE Transactions on Communications, 2022, 70(7): 4793–4806. doi: 10.1109/TCOMM.2022.3176654.
    [3]
    MISHRA D and JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019: 4659–4663. doi: 10.1109/ICASSP.2019.8683663.
    [4]
    MIRZA J and ALI B. Channel estimation method and phase shift design for reconfigurable intelligent surface assisted MIMO networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 441–451. doi: 10.1109/TCCN.2021.3072895.
    [5]
    HU Jiangfeng, YIN Haifan, and BJÖRNSON E. MmWave MIMO communication with semi-passive RIS: A low-complexity channel estimation scheme[C]. 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021: 01–06. doi: 10.1109/GLOBECOM46510.2021.9685434.
    [6]
    JIN Yu, ZHANG Jiayi, ZHANG Xiaodan, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083–11088. doi: 10.1109/TVT.2021.3109937.
    [7]
    NING Boyu, CHEN Zhi, CHEN Wenrong, et al. Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1376–1393. doi: 10.1109/TVT.2021.3052074.
    [8]
    WEI Yi, ZHAO Mingmin, ZHAO Minjian, et al. Channel estimation for IRS-aided multiuser communications with reduced error propagation[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2725–2741. doi: 10.1109/TWC.2021.3115161.
    [9]
    NOH S, SEO K, SUNG Y, et al. Joint direct and indirect channel estimation for RIS-assisted millimeter-wave systems based on array signal processing[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8378–8391. doi: 10.1109/TWC.2023.3262492.
    [10]
    PENG Zhendong, ZHOU Gui, PAN Cunhua, et al. Channel estimation for RIS-aided multi-user mmWave systems with uniform planar arrays[J]. IEEE Transactions on Communications, 2022, 70(12): 8105–8122. doi: 10.1109/TCOMM.2022.3214892.
    [11]
    LIU Yushan, ZHANG Shun, GAO Feifei, et al. Cascaded channel estimation for RIS assisted mmWave MIMO transmissions[J]. IEEE Wireless Communications Letters, 2021, 10(9): 2065–2069. doi: 10.1109/LWC.2021.3092147.
    [12]
    ZHANG Xinyu, JIANG Weidong, HUO Kai, et al. Robust adaptive beamforming based on linearly modified atomic-norm minimization with target contaminated data[J]. IEEE Transactions on Signal Processing, 2020, 68: 5138–5151. doi: 10.1109/TSP.2020.3021257.
    [13]
    KUSANO T, YATABE K, and OIKAWA Y. Sparse time-frequency representation via atomic norm minimization[C]. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, Canada, 2021: 5075–5079. doi: 10.1109/ICASSP39728.2021.9414921.
    [14]
    YANG Zai, XIE Lihua, and STOICA P. Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution[J]. IEEE Transactions on Information Theory, 2016, 62(6): 3685–3701. doi: 10.1109/TIT.2016.2553041.
    [15]
    CHEN Peng, CHEN Zhimin, MIAO Pu, et al. RIS-ADMM: An ADMM-based passive and sparse sensing method with interference removal[J]. arXiv preprint arXiv: 2206.06172, 2022.
    [16]
    SONG Haobo, ZHANG Mianyi, GAO Jiabao, et al. Unsupervised learning-based joint active and passive beamforming design for reconfigurable intelligent surfaces aided wireless networks[J]. IEEE Communications Letters, 2021, 25(3): 892–896. doi: 10.1109/LCOMM.2020.3041510.
    [17]
    YU Wentao, SHEN Yifei, HE Hengtao, et al. An adaptive and robust deep learning framework for THz ultra-massive MIMO channel estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(4): 761–776. doi: 10.1109/JSTSP.2023.3282832.
    [18]
    WANG Peilan, FANG Jun, DUAN Huiping, et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020, 27: 905–909. doi: 10.1109/LSP.2020.2998357.
    [19]
    DE ARAÚJO G T and DE ALMEIDA A L F. PARAFAC-based channel estimation for intelligent reflective surface assisted MIMO system[C]. 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hangzhou, China, 2020: 1–5. doi: 10.1109/SAM48682.2020.9104260.
    [20]
    WANG Zhaorui, LIU Liang, and CUI Shuguang. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6607–6620. doi: 10.1109/TWC.2020.3004330.
    [21]
    XIE Wenwu, XIAO Jian, ZHU Peng, et al. Multi-task learning-based channel estimation for RIS assisted multi-user communication systems[J]. IEEE Communications Letters, 2022, 26(3): 577–581. doi: 10.1109/LCOMM.2021.3138082.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (315) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return