Citation: | ZHOU Yu, ZHAO Xiaofeng, WANG Yi, SUN Yanjing, LI Song. Multi-Scale Occluded Person Re-Identification Guided by Key Fine-Grained Information[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2578-2586. doi: 10.11999/JEIT230686 |
[1] |
石跃祥, 周玥. 基于阶梯型特征空间分割与局部注意力机制的行人重识别[J]. 电子与信息学报, 2022, 44(1): 195–202. doi: 10.11999/JEIT201006.
SHI Yuexiang and ZHOU Yue. Person re-identification based on stepped feature space segmentation and local attention mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(1): 195–202. doi: 10.11999/JEIT201006.
|
[2] |
许文正, 黄天欢, 贲晛烨, 等. 跨视角步态识别综述[J]. 中国图象图形学报, 2023, 28(5): 1265–1286. doi: 10.11834/jig.220458.
XU Wenzheng, HUANG Tianhuan, BEN Xianye, et al. Cross-view gait recognition: A review[J]. Journal of Image and Graphics, 2023, 28(5): 1265–1286. doi: 10.11834/jig.220458.
|
[3] |
SUN Yifan, XU Qin, LI Yali, et al. Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 393–402. doi: 10.1109/CVPR.2019.00048.
|
[4] |
JIA Mengxi, CHENG Xinhua, ZHAI Yunpeng, et al. Matching on sets: Conquer occluded person re-identification without alignment[C/OL]. The 35th AAAI Conference on Artificial Intelligence, 2021: 1673–1681. doi: 10.1609/aaai.v35i2.16260.
|
[5] |
WANG Tao, LIU Hong, SONG Pinhao, et al. Pose-guided feature disentangling for occluded person re-identification based on transformer[C/OL]. The 36th AAAI Conference on Artificial Intelligence, 2022: 2540–2549. doi: 10.1609/aaai.v36i3.20155.
|
[6] |
YANG Jinrui, ZHANG Jiawei, YU Fufu, et al. Learning to know where to see: A visibility-aware approach for occluded person re-identification[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 11865–11874. doi: 10.1109/iccv48922.2021.01167.
|
[7] |
CHENG Xinhua, JIA Mengxi, WANG Qian, et al. More is better: Multi-source dynamic parsing attention for occluded person re-identification[C]. The 30th ACM International Conference on Multimedia, Lisbon, Portugal, 2022: 6840–6849. doi: 10.1145/3503161.3547819.
|
[8] |
SOMERS V, DE VLEESCHOUWER C, and ALAHI A. Body part-based representation learning for occluded person re-identification[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 1613–1623. doi: 10.1109/WACV56688.2023.00166.
|
[9] |
MIAO Jiaxu, WU Yu, LIU Ping, et al. Pose-guided feature alignment for occluded person re-identification[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 542–551. doi: 10.1109/ICCV.2019.00063.
|
[10] |
GAO Shang, WANG Jingya, LU Huchuan, et al. Pose-guided visible part matching for occluded person ReID[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11741–11749. doi: 10.1109/CVPR42600.2020.01176.
|
[11] |
WANG Guan’an, YANG Shuo, LIU Huanyu, et al. High-order information matters: Learning relation and topology for occluded person re-identification[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6448–6457. doi: 10.1109/CVPR42600.2020.00648.
|
[12] |
JIA Mengxi, CHENG Xinhua, LU Shijian, et al. Learning disentangled representation implicitly via transformer for occluded person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 1294–1305. doi: 10.1109/tmm.2022.3141267.
|
[13] |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[C/OL]. The 9th International Conference on Learning Representations, 2021.
|
[14] |
HE Shuting, LUO Hao, WANG Pichao, et al. TransReID: Transformer-based object re-identification[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14993–15002. doi: 10.1109/ICCV48922.2021.01474.
|
[15] |
ZHOU Qinqin, ZHONG Bineng, LAN Xiangyuan, et al. Fine-grained spatial alignment model for person re-identification with focal triplet loss[J]. IEEE Transactions on Image Processing, 2020, 29: 7578–7589. doi: 10.1109/TIP.2020.3004267.
|
[16] |
ZHUO Jiaxuan, CHEN Zeyu, LAI Jianhuang, et al. Occluded person re-identification[C]. 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1–6. doi: 10.1109/ICME.2018.8486568.
|
[17] |
ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: A benchmark[C]. The IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1116–1124. doi: 10.1109/ICCV.2015.133.
|
[18] |
ZHENG Zhedong, ZHENG Liang, and YANG Yi. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 3774–3782. doi: 10.1109/ICCV.2017.405.
|
[19] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[20] |
SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: Person retrieval with refined part pooling (and A Strong Convolutional Baseline)[C]. The 15th European Conference on Computer Vision-ECCV, Munich, Germany, 2018: 501–518. doi: 10.1007/978-3-030-01225-0_30.
|
[21] |
LI Yulin, HE Jianfeng, ZHANG Tianzhu, et al. Diverse part discovery: Occluded person re-identification with part-aware transformer[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2897–2906. doi: 10.1109/CVPR46437.2021.00292.
|
[22] |
HE Lingxiao, LIANG Jian, LI Haiqing, et al. Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7073–7082. doi: 10.1109/CVPR.2018.00739.
|
[23] |
YAN Cheng, PANG Guansong, JIAO Jile, et al. Occluded person re-identification with single-scale global representations[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 11855–11864. doi: 10.1109/ICCV48922.2021.01166.
|