Citation: | TANG Lun, DAI Jun, CHENG Zhangchao, ZHANG Hongpeng, CHEN Qianbin. Distributed Collaborative Path Planning Algorithm for Multiple Autonomous vehicles Based on Digital Twin[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2525-2532. doi: 10.11999/JEIT230678 |
[1] |
KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: A survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4909–4926. doi: 10.1109/TITS.2021.3054625.
|
[2] |
LI Yanqiang, MING Yu, ZHANG Zihui, et al. An adaptive ant colony algorithm for autonomous vehicles global path planning[C]. 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 2021: 1117–1122. doi: 10.1109/CSCWD49262.2021.9437682.
|
[3] |
ZHOU Jian, ZHENG Hongyu, WANG Junmin, et al. Multiobjective optimization of lane-changing strategy for intelligent vehicles in complex driving environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1291–1308. doi: 10.1109/TVT.2019.2956504.
|
[4] |
ZHU Gongsheng, PEI Chunmei, DING Jiang, et al. Deep deterministic policy gradient algorithm based lateral and longitudinal control for autonomous driving[C]. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 2020: 740–745. doi: 10.1109/ICMCCE51767.2020.00163.
|
[5] |
SHI Dian, DING Jiahao, ERRAPOTU S M, et al. Deep Q-network-based route scheduling for TNC vehicles with passengers’ location differential privacy[J]. IEEE Internet of Things Journal, 2019, 6(5): 7681–7692. doi: 10.1109/JIOT.2019.2902815.
|
[6] |
KHALIL A A and RAHMAN M A. FED-UP: Federated deep reinforcement learning-based UAV path planning against hostile defense system[C]. 2022 18th International Conference on Network and Service Management (CNSM), Thessaloniki, Greece, 2022: 268–274. doi: 10.23919/CNSM55787.2022.9964907.
|
[7] |
LI Yijing, TAO Xiaofeng, ZHANG Xuefei, et al. Privacy-preserved federated learning for autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8423–8434. doi: 10.1109/TITS.2021.3081560.
|
[8] |
唐伦, 文明艳, 单贞贞, 等. 移动边缘计算辅助智能驾驶中基于高效联邦学习的碰撞预警算法[J]. 电子与信息学报, 2023, 45(7): 2406–2414. doi: 10.11999/JEIT220797.
TANG Lun, WEN Mingyan, SHAN Zhenzhen et al. Collision warning algorithm based on efficient federated learning in mobile edge computing assisted intelligent driving[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2406–2414. doi: 10.11999/JEIT220797.
|
[9] |
KARRAS A, KARRAS C, GIOTOPOULOS K C, et al. Peer to peer federated learning: Towards decentralized machine learning on edge devices[C]. 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina, Greece, 2022: 1–9. doi: 10.1109/SEEDA-CECNSM57760.2022.9932980.
|
[10] |
SHEN Gaoqing, LEI Lei, LI Zhilin, et al. Deep reinforcement learning for flocking motion of multi-UAV systems: Learn from a digital twin[J]. IEEE Internet of Things Journal, 2022, 9(13): 11141–11153. doi: 10.1109/JIOT.2021.3127873.
|
[11] |
GLAESSGEN E and STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]. The 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 2012: 1818. doi: 10.2514/6.2012-1818.
|
[12] |
TAO Fei, ZHANG He, LIU Ang, et al. Digital twin in industry: State-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405–2415. doi: 10.1109/TII.2018.2873186.
|
[13] |
唐伦, 贺兰钦, 谭颀, 等. 基于深度确定性策略梯度的虚拟网络功能迁移优化算法[J]. 电子与信息学报, 2021, 43(2): 404–411. doi: 10.11999/JEIT190921.
TANG Lun, HE Lanqin, TAN Qi, et al. Virtual network function migration optimization algorithm based on deep deterministic policy gradient[J]. Journal of Electronics & Information Technology, 2021, 43(2): 404–411. doi: 10.11999/JEIT190921.
|
[14] |
LIN Qifeng and LING Qing. Byzantine-robust federated deep deterministic policy gradient[C]. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 4013–4017. doi: 10.1109/ICASSP43922.2022.9746320.
|
[15] |
MA Xu, SUN Xiaoqian, WU Yuduo, et al. Differentially private byzantine-robust federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 3690–3701. doi: 10.1109/TPDS.2022.3167434.
|