Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
KUO Yonghong, XUE Yanwen, LÜ Lu, HE Bingtao, CHEN Jian. Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2372-2381. doi: 10.11999/JEIT230672
Citation: KUO Yonghong, XUE Yanwen, LÜ Lu, HE Bingtao, CHEN Jian. Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2372-2381. doi: 10.11999/JEIT230672

Backscatter-NOMA Enabled Hybrid Multicast-Unicast Cooperative Transmission Scheme

doi: 10.11999/JEIT230672
Funds:  The National Natural Science Foundation of China (62271386, 61971320, 62201421), China Postdoctoral Science Foundation Project (BX20190264, 2019M650258), The Key R&D Program Project of Shaanxi Province (2023-YBGY-041), The Natural Science Basic Research Plan of Shaanxi Province (2021JQ-206), Guangdong Basic and Applied Basic Research Foundation (2020A1515110084)
  • Received Date: 2023-07-07
  • Rev Recd Date: 2024-03-25
  • Available Online: 2024-04-08
  • Publish Date: 2024-06-30
  • In order to address the low spectral efficiency and inefficient link utilization problem in cooperative relay communication system, a Backscatter-NOMA enabled hybrid multicast-unicast cooperative transmission scheme is proposed for the scenario of coexistence of multicast and unicast services. A multicast user is opportunistically selected as a cooperative node, which used a part of the power of the received signal for its own decoding, and backscatter the residual power to enhance the reception quality of other users. To improve system performance, the minimum achievable rate for unicast users is maximized by jointly optimizing the base station power allocation coefficients, cooperative user backscatter coefficients and cooperative node selection variables, while guaranteeing the quality of service for multicast. To solve the above highly non-convex joint optimization problem, a cooperative user selection criterion was designed and an iterative algorithm was proposed to obtain the optimal solution to the original problem. The simulation results verify the fast convergence of the proposed iterative algorithm, which can improve the minimum achievable rate of unicast users by 11.5% compared to the non-cooperative transmission scheme, and effectively ensure the quality of multi-service.
  • loading
  • [1]
    YANG Long, JIANG Hai, YE Qiang, et al. On the application of cooperative NOMA to spatially random wireless caching networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 12055–12071. doi: 10.1109/TVT.2021.3115128.
    [2]
    MIANDOAB F T, FAZEL M S, and MAHDAVI M. Outage analysis of multiuser MIMO-NOMA transmissions in uplink full-duplex cooperative system[J]. IEEE Wireless Communications Letters, 2022, 11(10): 2076–2079. doi: 10.1109/LWC.2022.3193489.
    [3]
    SALEM A and MUSAVIAN L. NOMA in cooperative communication systems with energy-harvesting nodes and wireless secure transmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1023–1037. doi: 10.1109/TWC.2020.3030133.
    [4]
    KIM J B and LEE I H. Non-orthogonal multiple access in coordinated direct and relay transmission[J]. IEEE Communications Letters, 2015, 19(11): 2037–2040. doi: 10.1109/LCOMM.2015.2474856.
    [5]
    LÜ Lu, CHEN Jian, NI Qiang, et al. Cognitive non-orthogonal multiple access with cooperative relaying: A new wireless frontier for 5G spectrum sharing[J]. IEEE Communications Magazine, 2018, 56(4): 188–195. doi: 10.1109/MCOM.2018.1700687.
    [6]
    DING Zhiguo, PENG Mugen, and POOR H V. Cooperative non-orthogonal multiple access in 5G systems[J]. IEEE Communications Letters, 2015, 19(8): 1462–1465. doi: 10.1109/LCOMM.2015.2441064.
    [7]
    DING Zhiguo, DAI Huaiyu, and POOR H V. Relay selection for cooperative NOMA[J]. IEEE Wireless Communications Letters, 2016, 5(4): 416–419. doi: 10.1109/LWC.2016.2574709.
    [8]
    DING Zhiguo, ZHAO Zhongyuan, PENG Mugen, et al. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming[J]. IEEE Transactions on Communications, 2017, 65(7): 3151–3163. doi: 10.1109/TCOMM.2017.2696527.
    [9]
    LV Lu, CHEN Jian, NI Qiang, et al. Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: User scheduling and performance analysis[J]. IEEE Transactions on Communications, 2017, 65(6): 2641–2656. doi: 10.1109/TCOMM.2017.2677942.
    [10]
    YANG Long, CHEN Jian, NI Qiang, et al. NOMA-enabled cooperative unicast–multicast: Design and outage analysis[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 7870–7889. doi: 10.1109/TWC.2017.2754261.
    [11]
    DO T N, DA COSTA D B, DUONG T Q, et al. Improving the performance of cell-edge users in NOMA systems using cooperative relaying[J]. IEEE Transactions on Communications, 2018, 66(5): 1883–1901. doi: 10.1109/TCOMM.2018.2796611.
    [12]
    ZHANG Zhongshan, CHAI Xiaomeng, LONG Keping, et al. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection[J]. IEEE Communications Magazine, 2015, 53(5): 128–137. doi: 10.1109/MCOM.2015.7105651.
    [13]
    ZHONG Caijun and ZHANG Zhaoyang. Non-orthogonal multiple access with cooperative full-duplex relaying[J]. IEEE Communications Letters, 2016, 20(12): 2478–2481. doi: 10.1109/LCOMM.2016.2611500.
    [14]
    ASIF M, IHSAN A, KHAN W U, et al. Energy-efficient backscatter-assisted coded cooperative NOMA for B5G wireless communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 70–83. doi: 10.1109/TGCN.2022.3216209.
    [15]
    ASIF M, IHSAN A, KHAN W U, et al. Energy-efficient beamforming and resource optimization for AmBSC-assisted cooperative NOMA IoT networks[J]. IEEE Internet of Things Journal, 2023, 10(14): 12434–12448. doi: 10.1109/JIOT.2023.3247021.
    [16]
    LI Suyue, BARIAH L, MUHAIDAT S, et al. Outage analysis of NOMA-enabled backscatter communications with intelligent reflecting surfaces[J]. IEEE Internet of Things Journal, 2022, 9(16): 15390–15400. doi: 10.1109/JIOT.2022.3150418.
    [17]
    叶迎晖, 施丽琴, 卢光跃. 反向散射辅助的无线供能通信网络中用户能效公平性研究[J]. 通信学报, 2020, 41(7): 84–94. doi: 10.11959/j.issn.1000-436x.2020133.

    YE Yinghui, SHI Liqin, and LU Guangyue. User-centric energy efficiency fairness in backscatter-assisted wireless powered communication network[J]. Journal on Communications, 2020, 41(7): 84–94. doi: 10.11959/j.issn.1000-436x.2020133.
    [18]
    施丽琴, 叶迎晖, 卢光跃. 无线供能边缘计算网络中系统计算能效最大化资源分配方案[J]. 通信学报, 2020, 41(10): 59–69. doi: 10.11959/j.issn.1000-436x.2020182.

    SHI Liqin, YE Yinghui, and LU Guangyue. Computation energy efficiency maximization based resource allocation scheme in wireless powered mobile edge computing network[J]. Journal on Communications, 2020, 41(10): 59–69. doi: 10.11959/j.issn.1000-436x.2020182.
    [19]
    徐勇军, 杨浩克, 李国军, 等. 多标签无线供电反向散射通信网络能效优化算法[J]. 电子与信息学报, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.

    XU Yongjun, YANG Haoke, LI Guojun, et al. Energy-efficient optimization algorithm in multi-tag wireless-powered backscatter communication networks[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.
    [20]
    CHEN Weiyu, DING Haiyang, WANG Shilian, et al. Backscatter cooperation in NOMA communications systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(6): 3458–3474. doi: 10.1109/TWC.2021.3050600.
    [21]
    ZHANG Wei, CHEN Jian, KUO Yonghong, et al. Artificial-noise-aided optimal beamforming in layered physical layer security[J]. IEEE Communications Letters, 2019, 23(1): 72–75. doi: 10.1109/LCOMM.2018.2881182.
    [22]
    HUANG Ronglan, WAN Dehuan, JI Fei, et al. Performance analysis of NOMA-based cooperative networks with relay selection[J]. China Communications, 2020, 17(11): 111–119. doi: 10.23919/JCC.2020.11.010.
    [23]
    BECK A, BEN-TAL A, and TETRUASHVILI L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems[J]. Journal of Global Optimization, 2010, 47(1): 29–51. doi: 10.1007/s10898-009-9456-5.
    [24]
    LV LÜ, CHEN Jian, and NI Qiang. Cooperative non-orthogonal multiple access in cognitive radio[J]. IEEE Communications Letters, 2016, 20(10): 2059–2062. doi: 10.1109/LCOMM.2016.2596763.
    [25]
    HU Yang, ZHANG Xuedan, and DONG Yuhan. A novel sub-domain cooperative scheme in random relay selection wireless networks[C]. 2013 47th Annual Conference on Information Sciences and Systems, Baltimore, USA, 2013: 1–6. doi: 10.1109/CISS.2013.6552301.
    [26]
    MANGLAYEV T, KIZILIRMAK R C, and KHO Y H. Optimum power allocation for non-orthogonal multiple access (NOMA)[C]. The IEEE 10th International Conference on Application of Information and Communication Technologies, Baku, Azerbaijan, 2016: 1–4. doi: 10.1109/ICAICT.2016.7991730.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (251) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return