Citation: | LI Dongsheng, WANG Guoyan, LIU Jinxin, FAN Hongqi, LI Biao. Joint Internal and External Parameters Calibration of Optical Compound Eye Based on Random Noise Calibration Pattern[J]. Journal of Electronics & Information Technology, 2024, 46(7): 2898-2907. doi: 10.11999/JEIT230652 |
[1] |
QI Qiming, FU Ruigang, SHAO Zhengzheng, et al. Multi-aperture optical imaging systems and their mathematical light field acquisition models[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(6): 823–844. doi: 10.1631/FITEE.2100058.
|
[2] |
王国锋, 王立, 刘岩, 等. 蝇复眼在导弹上的应用[J]. 弹箭与制导学报, 2002(S2): 102–104.
WANG Guofeng, WANG Li, LIU Yan, et al. Research of missile based on ommateum[J]. Journal of Projectiles, Missiles and Guidance, 2002(S2): 102–104.
|
[3] |
芦丽明. 蝇复眼在导弹上的应用研究[D]. [博士论文], 西北工业大学, 2002.
LU Liming. Studies on missile guidance using fly’s ommateum technology[D]. [Ph. D. dissertation], Northwestern Polytechnical University, 2002.
|
[4] |
SONG Yanfeng, HAO Qun, CAO Jie, et al. The application of artificial compound eye in precision guided munitions for urban combat[J]. Journal of Physics: Conference Series, 2023, 2460: 012170. doi: 10.1088/1742-6596/2460/1/012170.
|
[5] |
MA Mengchao, LI Hang, GAO Xicheng, et al. Target orientation detection based on a neural network with a bionic bee-like compound eye[J]. Optics Express, 2020, 28(8): 10794–10805. doi: 10.1364/OE.388125.
|
[6] |
DENG Xinpeng, QIU Su, JIN Weiqi, et al. Three-dimensional reconstruction method for bionic compound-eye system based on MVSNet network[J]. Electronics, 2022, 11(11): 1790. doi: 10.3390/electronics11111790.
|
[7] |
MARTIN N and FRANCESCHINI N. Obstacle avoidance and speed control in a mobile vehicle equipped with a compound eye[C]. Intelligent Vehicles ‘94 Symposium, Paris, France, 1994: 381–386. doi: 10.1109/IVS.1994.639548.
|
[8] |
HAN Yibo, LI Xia, LI Xiaocui, et al. Recognition and detection of wide field bionic compound eye target based on cloud service network[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 865130. doi: 10.3389/fbioe.2022.865130.
|
[9] |
雷卫宁, 郭云芝, 高挺挺. 基于仿生复眼的大视场探测系统结构研究[J]. 光学与光电技术, 2016, 14(3): 62–66.
LEI Weining, GUO Yunzhi, and GAO Tingting. Study on the structure of large field view detection system based on bionic compound eye[J]. Optics & Optoelectronic Technology, 2016, 14(3): 62–66.
|
[10] |
许黄蓉, 刘晋亨, 张远杰, 等. 无人机载型曲面仿生复眼成像测速系统[J]. 光子学报, 2021, 50(9): 0911004. doi: 10.3788/gzxb20215009.0911004.
XU Huangrong, LIU Jinheng, ZHANG Yuanjie, et al. UAV-borne biomimetic curved compound-eye imaging system for velocity measurement[J]. Acta Photonica Sinica, 2021, 50(9): 0911004. doi: 10.3788/gzxb20215009.0911004.
|
[11] |
KOO G, JUNG W, and DOH N. A two-step optimization for extrinsic calibration of Multiple Camera System (MCS) using depth-weighted normalized points[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6608–6615. doi: 10.1109/LRA.2021.3094412.
|
[12] |
袁泽强, 谷宇章, 邱守猛, 等. 多相机式仿生曲面复眼的标定与目标定位[J]. 光子学报, 2021, 50(9): 0911005. doi: 10.3788/gzxb20215009.0911005.
YUAN Zeqiang, GU Yuzhang, QIU Shoumeng, et al. Calibration and target position of bionic curved compound eye composed of multiple cameras[J]. Acta Photonica Sinica, 2021, 50(9): 0911005. doi: 10.3788/gzxb20215009.0911005.
|
[13] |
赵子良, 张宗华, 高楠, 等. 基于ChArUco平板的多目相机标定[J]. 应用光学, 2021, 42(5): 848–852. doi: 10.5768/JAO202142.0502004.
ZHAO Ziliang, ZHANG Zonghua, GAO Nan, et al. Calibration of multiple cameras based on ChArUco board[J]. Journal of Applied Optics, 2021, 42(5): 848–852. doi: 10.5768/JAO202142.0502004.
|
[14] |
GEIGER A, MOOSMANN F, CAR Ö, et al. Automatic camera and range sensor calibration using a single shot[C]. 2012 IEEE International Conference on Robotics and Automation, Saint Paul, USA, 2012: 3936–3943. doi: 10.1109/ICRA.2012.6224570.
|
[15] |
HARTLEY R and KANG S B. Parameter-free radial distortion correction with center of distortion estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8): 1309–1321. doi: 10.1109/TPAMI.2007.1147.
|
[16] |
ZHU Chen, ZHOU Zihan, XING Ziran, et al. Robust plane-based calibration of multiple non-overlapping cameras[C]. The 2016 Fourth International Conference on 3D Vision, Stanford, USA, 2016: 658–666. doi: 10.1109/3DV.2016.73.
|
[17] |
HENG L, BÜRKI M, LEE G H, et al. Infrastructure-based calibration of a multi-camera rig[C]. Proceedings of 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, 2014: 4912–4919. doi: 10.1109/ICRA.2014.6907579.
|
[18] |
LIN Yukai, LARSSON V, GEPPERT M, et al. Infrastructure-based multi-camera calibration using radial projections[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 327–344. doi: 10.1007/978-3-030-58517-4_20.
|
[19] |
HENG L, FURGALE P, and POLLEFEYS M. Leveraging image-based localization for infrastructure-based calibration of a multi-camera rig[J]. Journal of Field Robotics, 2015, 32(5): 775–802. doi: 10.1002/rob.21540.
|
[20] |
DEXHEIMER E, PELUSE P, CHEN Jianhui, et al. Information-theoretic online multi-camera extrinsic calibration[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4757–4764. doi: 10.1109/LRA.2022.3145061.
|
[21] |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718.
|
[22] |
XING Ziran, YU Jingyi, and MA Yi. A new calibration technique for multi-camera systems of limited overlapping field-of-views[C]. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Canada, 2017: 5892–5899. doi: 10.1109/IROS.2017.8206482.
|
[23] |
ATCHESON B, HEIDE F, and HEIDRICH W. CALTag: High precision fiducial markers for camera calibration[C]. The 15th International Workshop on Vision, Siegen, Germany, 2010: 41–48. doi: 10.2312/PE/VMV/VMV10/041-048.
|
[24] |
FIALA M. ARTag, a fiducial marker system using digital techniques[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 590–596. doi: 10.1109/CVPR.2005.74.
|
[25] |
FIALA M and SHU Chang. Self-identifying patterns for plane-based camera calibration[J]. Machine Vision and Applications, 2008, 19(4): 209–216. doi: 10.1007/s00138-007-0093-z.
|
[26] |
HEROUT A, SZENTANDRÁSI I, ZACHARIÁ M, et al. Five shades of grey for fast and reliable camera pose estimation[C]. Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1384–1390. doi: 10.1109/CVPR.2013.182.
|
[27] |
LI Bo, HENG L, KOSER K, et al. A multiple-camera system calibration toolbox using a feature descriptor-based calibration pattern[C]. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 2013: 1301–1307. doi: 10.1109/IROS.2013.6696517.
|
[28] |
SCARAMUZZA D, MARTINELLI A, and SIEGWART R. A flexible technique for accurate omnidirectional camera calibration and structure from motion[C]. Proceedings of the Fourth IEEE International Conference on Computer Vision Systems, New York, USA, 2006: 45. doi: 10.1109/ICVS.2006.3.
|
[29] |
SCARAMUZZA D, MARTINELLI A, and SIEGWART R. A toolbox for easily calibrating omnidirectional cameras[C]. Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 5695–5701. doi: 10.1109/IROS.2006.282372.
|
[30] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
|
[31] |
FATMA A, KHALED K, and ZEMZEMI F. Design, construction and calibration of an omnidirectional camera[C]. 2013 International Conference on Individual and Collective Behaviors in Robotics, Sousse, Tunisia, 2013: 49–55. doi: 10.1109/ICBR.2013.6729265.
|
[32] |
MEI C and RIVES P. Single view point omnidirectional camera calibration from planar grids[C]. 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 2007: 3945–3950. doi: 10.1109/ROBOT.2007.364084.
|
[33] |
HEIKKILA J and SILVEN O. A four-step camera calibration procedure with implicit image correction[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, USA, 1997: 1106–1112. doi: 10.1109/CVPR.1997.609468.
|
[34] |
RAMEAU F, PARK J, BAILO O, et al. MC-Calib: A generic and robust calibration toolbox for multi-camera systems[J]. Computer Vision and Image Understanding, 2022, 217: 103353. doi: 10.1016/j.cviu.2021.103353.
|