Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
CAI Yiheng, TAN Meiling, PAN Jianjun, HE Kaiqi. Hyperspectral Image Classification Based on Multi-scale Asymmetric Dense Network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1448-1457. doi: 10.11999/JEIT230651
Citation: CAI Yiheng, TAN Meiling, PAN Jianjun, HE Kaiqi. Hyperspectral Image Classification Based on Multi-scale Asymmetric Dense Network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1448-1457. doi: 10.11999/JEIT230651

Hyperspectral Image Classification Based on Multi-scale Asymmetric Dense Network

doi: 10.11999/JEIT230651
Funds:  The National Key Research and Development Program of China (2017YFC1703302)
  • Received Date: 2023-06-30
  • Rev Recd Date: 2023-12-05
  • Available Online: 2023-12-14
  • Publish Date: 2024-04-24
  • HyperSpectral Image (HSI) classification methods based on limited labeled samples have made significant progress in recent years. However, due to the specificity of hyperspectral images, redundant information and limited labeled samples pose great challenges for extracting highly discriminative features. In addition, owing to the uneven distribution of pixels in each category, how to strengthen the role of central pixels and attenuate the negative impact of surrounding pixels with different categories is also the key to improve the classification performance. To overcome the above limitations, an HSI classification method based on Multi-Scale Asymmetric Dense Network (MS-ADNet) is proposed. Firstly, a multi-scale sample construction module is proposed, which extracts multiple scale patches around each pixel and performs deconvolution and stitching to construct multiscale input samples that contain both detailed structural regions and large homogeneous regions. Next, an asymmetric densely connected structure is proposed to achieve kernel skeleton enhancement in joint spatial and spectral feature extraction, i.e., enhancement of features extracted from the central cross-skeleton portion of a square convolutional kernel, which effectively facilitates feature reuse. Moreover, to improve the discriminability of spectral features, a streamlined element spectral attention mechanism is proposed and placed at the front and back ends of the densely connected network. With only five samples per class used for network training, the proposed method achieves competitive classification results with overall accuracies of 77.66%, 84.54%, and 92.39% on the Indiana Pines, Pavia University, and Salinas datasets, respectively.
  • loading
  • [1]
    YAO Ding, ZHANG Zhili, ZHAO Xiaofeng, et al. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification[J]. Defence Technology, 2023, 23: 164–176. doi: 10.1016/j.dt.2022.02.007.
    [2]
    WANG Xue, TAN Kun, DU Peijun, et al. A unified multiscale learning framework for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4508319. doi: 10.1109/tgrs.2022.3147198.
    [3]
    CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232–6251. doi: 10.1109/TGRS.2016.2584107.
    [4]
    LI Ying, ZHANG Haokui, and SHEN Qiang. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67. doi: 10.3390/rs9010067.
    [5]
    刘娜, 李伟, 陶然. 图信号处理在高光谱图像处理领域的典型应用[J]. 电子与信息学报, 2023, 45(5): 1529–1540. doi: 10.11999/JEIT220887.

    LIU Na, LI Wei, and TAO Ran. Typical Application of graph signal processing in hyperspectral image processing[J]. Journal of Electronics & Information Technology, 2023, 45(5): 1529–1540. doi: 10.11999/JEIT220887.
    [6]
    SHAHRAKI F F and PRASAD S. Graph convolutional neural networks for hyperspectral data classification[C]. 2018 IEEE Global Conference on Signal and Information Processing, Anaheim, USA, 2018: 968–972. doi: 10.1109/GlobalSIP.2018.8645969.
    [7]
    ZHU Lin, CHEN Yushi, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5046–5063. doi: 10.1109/TGRS.2018.2805286.
    [8]
    MOU Lichao, GHAMISI P, and ZHU Xiaoxiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3639–3655. doi: 10.1109/TGRS.2016.2636241.
    [9]
    ZHU Kaiqiang, CHEN Yushi, GHAMISI P, et al. Deep convolutional capsule network for hyperspectral image spectral and spectral-spatial classification[J]. Remote Sensing, 2019, 11(3): 223. doi: 10.3390/rs11030223.
    [10]
    ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification: A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847–858. doi: 10.1109/TGRS.2017.2755542.
    [11]
    WANG Wenju, DOU Shuguang, JIANG Zhongmin, et al. A fast dense spectral-spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068. doi: 10.3390/rs10071068.
    [12]
    CAI Yiheng, GUO Yajun, LANG Shinan, et al. Classification of hyperspectral images by spectral-spatial dense-residual network[J]. Journal of Applied Remote Sensing, 2020, 14(3): 036513. doi: 10.1117/1.JRS.14.036513.
    [13]
    FANG Bei, LI Ying, ZHANG Haokui, et al. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism[J]. Remote Sensing, 2019, 11(2): 159. doi: 10.3390/rs11020159.
    [14]
    YAN Huaiping, WANG Jun, TANG Lei, et al. A 3D cascaded spectral-spatial element attention network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(13): 2451. doi: 10.3390/rs13132451.
    [15]
    PAN Jianjun, CAI Yiheng, TAN Meiling, et al. Multiscale residual weakly dense network with attention mechanism for hyperspectral image classification[J]. Journal of Applied Remote Sensing, 2022, 16(3): 034504. doi: 10.1117/1.Jrs.16.034504.
    [16]
    ZHU Minghao, JIAO Licheng, LIU Fang, et al. Residual spectral-spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 449–462. doi: 10.1109/TGRS.2020.2994057.
    [17]
    SUN Le, ZHAO Guangrui, ZHENG Yuhui, et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5522214. doi: 10.1109/TGRS.2022.3144158.
    [18]
    CAI Yiheng, XIE Jin, LANG Shinan, et al. Hyperspectral image classification using multi-branch-multi-scale residual fusion network[J]. Journal of Applied Remote Sensing, 2021, 15(2): 024512. doi: 10.1117/1.JRS.15.024512.
    [19]
    LIU Bing, YU Anzhu, YU Xuchu, et al. Deep multiview learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7758–7772. doi: 10.1109/TGRS.2020.3034133.
    [20]
    LI Zhaokui, LIU Ming, CHEN Yushi, et al. Deep cross-domain few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5501618. doi: 10.1109/TGRS.2021.3057066.
    [21]
    XUE Zhixiang, YU Xuchu, LIU Bing, et al. HresNetAM: Hierarchical residual network with attention mechanism for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3566–3580. doi: 10.1109/JSTARS.2021.3065987.
    [22]
    HE Xin, CHEN Yushi, and GHAMISI P. Dual graph convolutional network for hyperspectral image classification with limited training samples[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5502418. doi: 10.1109/TGRS.2021.3061088.
    [23]
    LI Rui, ZHENG Shunyi, DUAN Chenxi, et al. Classification of hyperspectral image based on double-branch dual-attention mechanism network[J]. Remote Sensing, 2020, 12(3): 582. doi: 10.3390/rs12030582.
    [24]
    XIE Jie, HE Nanjun, FANG Leyuan, et al. Multiscale densely-connected fusion networks for hyperspectral images classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(1): 246–259. doi: 10.1109/TCSVT.2020.2975566.
    [25]
    HU Jie, SHEN Li, and SUN Gang. Squeeze-and-excitation networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132–7141. doi: 10.1109/CVPR.2018.00745.
    [26]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
    [27]
    LIU Bing, YU Xuchu, YU Anzhu, et al. Deep few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2290–2304. doi: 10.1109/TGRS.2018.2872830.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (293) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return