Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
FENG Simeng, ZHAO Yidi, DONG Chao, WU Qihui. Key Technologies and Development Trends of Free Space Optical UAV Communication Network[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2311-2322. doi: 10.11999/JEIT230644
Citation: FENG Simeng, ZHAO Yidi, DONG Chao, WU Qihui. Key Technologies and Development Trends of Free Space Optical UAV Communication Network[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2311-2322. doi: 10.11999/JEIT230644

Key Technologies and Development Trends of Free Space Optical UAV Communication Network

doi: 10.11999/JEIT230644
Funds:  The National Natural Science Foundation of China Youth Science Foundation Project (62001219), The Natural Science Foundation of Jiangsu Province Basic Research Program-Frontier Leading Technology Basic Research Project (BK20222013), Jiangsu Province Industry Outlook and Key Core Technology Key Projects (BE2021013-4)
  • Received Date: 2023-06-29
  • Accepted Date: 2023-11-14
  • Rev Recd Date: 2023-11-06
  • Available Online: 2023-11-17
  • Publish Date: 2024-06-30
  • Considering the electromagnetic spectrum congestion and serious interference, the Free Space Optical (FSO)-based Unmanned Aerial Vehicle (UAV) communication network constitutes an important part for the space-air-ground integration, attracting substantial attention from both academia and industry. Compared to radio frequency communication, FSO communication is benefited from high data rate, low latency and high security. However, the FSO link is susceptible to atmospheric environment, while the mobile UAV dynamics topology and limited resources bring further challenges. Therefore, this paper first introduces the FSO transmission characteristics and then focuses on the key technologies to enhance stability and quality of FSO-based UAV networks. Furthermore, the development trend of FSO-based UAV network, in terms of high reliability, strong intelligence and long endurance is analyzed.
  • loading
  • [1]
    GUO Wenjng, ZHAN Yueying, TSIFTSIS T A, et al. Performance and channel modeling optimization for hovering UAV-assisted FSO links[J]. Journal of Lightwave Technology, 2022, 40(15): 4999–5012. doi: 10.1109/JLT.2022.3176352.
    [2]
    SINGH D and SWAMINATHAN R. Comprehensive performance analysis of hovering UAV-based FSO communication system[J]. IEEE Photonics Journal, 2022, 14(5): 7352013. doi: 10.1109/JPHOT.2022.3205704.
    [3]
    JANJI S, SAMORZEWSKI A, WASILEWSKA M, et al. On the placement and sustainability of drone FSO backhaul relays[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1723–1727. doi: 10.1109/LWC.2022.3178546.
    [4]
    CHLESTIL C, LEITGEB E, SCHMITT N P, et al. Reliable optical wireless links within UAV swarms[C]. Proceedings of 2006 International Conference on Transparent Optical Networks, Nottingham, UK, 2006: 39–42. doi: 10.1109/ICTON.2006.248491.
    [5]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
    [6]
    SHAKHATREH H, SAWALMEH A H, AL-FUQAHA A, et al. Unmanned Aerial Vehicles (UAVs): A survey on civil applications and key research challenges[J]. IEEE Access, 2019, 7: 48572–48634. doi: 10.1109/ACCESS.2019.2909530.
    [7]
    XU Guanjun, ZHANG Ning, XU Maozhe, et al. Outage probability and average BER of UAV-assisted dual-hop FSO communication with amplify-and-forward relaying[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8287–8302. doi: 10.1109/TVT.2023.3252822.
    [8]
    LI Jia, LIU Jingchong, LU Qi, et al. Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels[J]. IEEE Transactions on Communications, 2007, 55(6): 1267. doi: 10.1109/TCOMM.2007.901509.
    [9]
    CHOI M, SONG S, KO D E, et al. Trajectory optimization for FSO based U-IoT backhaul networks[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 2030–2044. doi: 10.1109/TNSE.2023.3239060.
    [10]
    BASHIR M S and ALOUINI M S. Energy optimization of a laser-powered hovering-UAV relay in optical wireless backhaul[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3216–3230. doi: 10.1109/TWC.2022.3216797.
    [11]
    SAXENA P and CHUNG Y H. Analysis of jamming effects in IRS assisted UAV dual-hop FSO communication systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8956–8971. doi: 10.1109/TVT.2023.3246817.
    [12]
    BORAH D K and VOELZ D G. Pointing error effects on free-space optical communication links in the presence of atmospheric turbulence[J]. Journal of Lightwave Technology, 2009, 27(18): 3965–3973. doi: 10.1109/JLT.2009.2022771.
    [13]
    MAI V V and KIM H. Beam size optimization and adaptation for high-altitude airborne free-space optical communication systems[J]. IEEE Photonics Journal, 2019, 11(2): 7902213. doi: 10.1109/JPHOT.2019.2901952.
    [14]
    DABIRI M T, SADOUGH S M S, and KHALIGHI M A. Channel modeling and parameter optimization for hovering UAV-based free-space optical links[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(9): 2104–2113. doi: 10.1109/JSAC.2018.2864416.
    [15]
    MA Yang, WANG Jinyuan, WANG Junbo, et al. Outage performance analysis and parameter optimization of hovering UAV-based FSO system[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9149422.
    [16]
    DABIRI M T, KHANKALANTARY S, PIRAN M J, et al. UAV-assisted free space optical communication system with amplify-and-forward relaying[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8926–8936. doi: 10.1109/TVT.2021.3098389.
    [17]
    LIANG Jingyuan, CHEN Ruidong, YAO Haifeng, et al. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electronic Engineering, 2022, 49(8): 210439. doi: 10.12086/oee.2022.210439.
    [18]
    ABDELFATAH R, ALSHAER N, and ISMAIL T. A review on pointing, acquisition, and tracking approaches in UAV-based fso communication systems[J]. Optical and Quantum Electronics, 2022, 54(9): 571. doi: 10.1007/s11082-022-03968-2.
    [19]
    SUN Xiang, ZHANG Tianrun, SHAO Sihua, et al. Low cost ATP system design for free space optics based drone assisted wireless networks[C]. 2022 IEEE Globecom Workshops, Rio de Janeiro, Brazil, 2022: 891–896. doi: 10.1109/GCWkshps56602.2022.10008619.
    [20]
    PARK S, YEO C I, HEO Y S, et al. Tracking efficiency improvement according to incident beam size in QPD-based PAT system for common path-based full-duplex FSO terminals[J]. Sensors, 2022, 22(20): 7770. doi: 10.3390/s22207770.
    [21]
    JAHID A, ALSHARIF M H, and HALL T J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction[J]. Journal of Network and Computer Applications, 2022, 200: 103311. doi: 10.1016/j.jnca.2021.103311.
    [22]
    BAYAKI E, SCHOBER R, and MALLIK R K. Performance analysis of MIMO free-space optical systems in gamma-gamma fading[J]. IEEE Transactions on Communications, 2009, 57(11): 3415–3424. doi: 10.1109/TCOMM.2009.11.080 168.
    [23]
    SINGH P K, SINGH Y, KOLEKAR M H, et al. Recent Innovations in Computing: Proceedings of ICRIC 2020: Vol. 701[M]. Singapore: Springer, 2021: 73–84. doi: 10.1007/978-981-15-8297-4.
    [24]
    HASAN S M A, AHMED S, and NAZRUL ISLAM A K M. Simulation of a massive MIMO FSO system under atmospheric turbulence[C]. The 5th International Conference on Electrical Engineering and Information Communication Technology, Dhaka, Bangladesh, 2021: 1–6. doi: 10.1109/ICEEICT53905.2021.9667905.
    [25]
    MICHAILIDIS E T, BITHAS P S, NOMIKOS N, et al. Outage probability analysis in multi-user FSO/RF and UAV-enabled MIMO communication networks[J]. Physical Communication, 2021, 49: 101475. doi: 10.1016/j.phycom.2021.101475.
    [26]
    NADEEM F, KVICERA V, AWAN M, et al. Weather effects on hybrid FSO/RF communication link[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(9): 1687–1697. doi: 10.1109/JSAC.2009.091218.
    [27]
    NAFEES M, HUANG S J, THOMPSON J, et al. Backhaul-aware user association and throughput maximization in UAV-aided hybrid FSO/RF network[J]. Drones, 2023, 7(2): 74. doi: 10.3390/drones7020074.
    [28]
    YAHIA O B, ERDOGAN E, KURT G K, et al. A weather-dependent hybrid RF/FSO satellite communication for improved power efficiency[J]. IEEE Wireless Communications Letters, 2022, 11(3): 573–577. doi: 10.1109/LWC.2021.3136444.
    [29]
    KONG Huaicong, LIN Min, ZHANG Jian, et al. Ergodic sum rate for uplink NOMA transmission in satellite-aerial-ground integrated networks[J]. Chinese Journal of Aeronautics, 2022, 35(9): 58–70. doi: 10.1016/j.cja.2021.10.039.
    [30]
    GUO Zinan, GAO Wei, YE Haijun, et al. A location-aware resource optimization for maximizing throughput of emergency outdoor–indoor UAV communication with FSO/RF[J]. Sensors, 2023, 23(5): 2541. doi: 10.3390/s23052541.
    [31]
    LEE J H, PARK K H, KO Y C, et al. Throughput maximization of mixed FSO/RF UAV-aided mobile relaying with a buffer[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 683–694. doi: 10.1109/TWC.2020.3028068.
    [32]
    LU Rongrong, MA Yang, LIN Shenghong, et al. Energy-efficient trajectory optimization for UAV-based hybrid FSO/RF communications with buffer constraints[J]. Entropy, 2021, 23(12): 1596. doi: 10.3390/e23121596.
    [33]
    LAPČÁK M, OVSENÍK L, ORAVEC J, et al. Investigation of machine learning methods for prediction of measured values of atmospheric channel for hybrid FSO/RF system[J]. Photonics, 2022, 9(8): 524. doi: 10.3390/photonics 9080524.
    [34]
    ZHU Pengfei, ZHANG Jiawei, GAO Zhengguang, et al. Adaptive resource allocation in FSO/RF multiuser system with proportional fairness for UAV application[J]. Optical Switching and Networking, 2019, 33: 41–48. doi: 10.1016/j.osn.2018.12.003.
    [35]
    FAWAZ W, ABOU-RJEILY C, and ASSI C. UAV-aided cooperation for FSO communication systems[J]. IEEE Communications Magazine, 2018, 56(1): 70–75. doi: 10.1109/MCOM.2017.1700320.
    [36]
    DABIRI M T and SADOUGH S M S. Optimal placement of UAV-assisted free-space optical communication systems with DF relaying[J]. IEEE Communications Letters, 2020, 24(1): 155–158. doi: 10.1109/LCOMM.2019.2949274.
    [37]
    JIANG Xu, WU Zhliu, YIN Zhendong, et al. Power and trajectory optimization for UAV-enabled amplify-and-forward relay networks[J]. IEEE Access, 2018, 6: 48688–48696. doi: 10.1109/ACCESS.2018.2867849.
    [38]
    SONG S, CHOI M, KO D E, et al. Multi-UAV trajectory optimization considering collisions in FSO communication networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(11): 3378–3394. doi: 10.1109/JSAC.2021.3088665.
    [39]
    LEE J H, PARK K H, KO Y C, et al. A UAV-mounted free space optical communication: Trajectory optimization for flight time[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 1610–1621. doi: 10.1109/TWC.2019.2955475.
    [40]
    AJAM H, NAJAFI M, JAMALI V, et al. Ergodic sum rate analysis of UAV-based relay networks with mixed RF-FSO channels[J]. IEEE Open Journal of the Communications Society, 2020, 1: 164–178. doi: 10.1109/OJCOMS.2020.2969492.
    [41]
    ABOU-RJEILY C and FAWAZ W. Buffer-aided relaying protocols for cooperative FSO communications[J]. IEEE Transactions on Wireless Communications, 2017, 16(12): 8205–8219. doi: 10.1109/TWC.2017.2759107.
    [42]
    AL-ERYANI Y F, SALHAB A M, ZUMMO S A, et al. Protocol design and performance analysis of multiuser mixed RF and hybrid FSO/RF relaying with buffers[J]. Journal of Optical Communications and Networking, 2018, 10(4): 309–321. doi: 10.1364/JOCN.10.000309.
    [43]
    NAJAFI M, JAMALI V, and SCHOBER R. Optimal relay selection for the parallel hybrid RF/FSO relay channel: Non-buffer-aided and buffer-aided designs[J]. IEEE Transactions on Communications, 2017, 65(7): 2794–2810. doi: 10.1109/TCOMM.2017.2686868.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (857) PDF downloads(183) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return