Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Ruifeng, ZHANG Ming, HUANG Ziheng, HE Tao. Resource Allocation Algorithm of Urban Rail Train-to-Train Communication with A2C-ac[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1306-1313. doi: 10.11999/JEIT230623
Citation: WANG Ruifeng, ZHANG Ming, HUANG Ziheng, HE Tao. Resource Allocation Algorithm of Urban Rail Train-to-Train Communication with A2C-ac[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1306-1313. doi: 10.11999/JEIT230623

Resource Allocation Algorithm of Urban Rail Train-to-Train Communication with A2C-ac

doi: 10.11999/JEIT230623
Funds:  The National Natural Science Foundation of China Railway Basic Research Joint Fund (U2268206)
  • Received Date: 2023-06-25
  • Rev Recd Date: 2023-09-28
  • Available Online: 2023-10-11
  • Publish Date: 2024-04-24
  • In the train control system of urban rail transit, Train-to-Train (T2T) communication, a new train communication mode, use direct communication between trains to reduce communication delay and improve train operation efficiency. In the scenario of the coexistence of T2T communication and Train to Ground (T2G) communication, an improved Advantage Actor-Critic-ac (A2C-ac) resource allocation algorithm based on Multi-Agent Deep Reinforcement Learning (MADRL) is proposed to solve the interference problem caused by multiplexing T2G links, and under the premise of ensuring the quality of user communication. Firstly, taking the system throughput as the optimization goal and the T2T communication transmitter as the agent, the policy network adopts a hierarchical output structure to guide the agent in selecting the spectrum resources and power level to be reused. Then the agent makes corresponding actions and interacts with the communication environment to obtain the throughput of T2G users and T2T users in the time slot. The value network evaluates the two separately and uses the weight factor $ \beta $ to customize the weighted Temporal Difference (TD) error for each agent to optimize the neural network parameters flexibly. Finally, the agents jointly select the best spectral resources and power levels according to the trained model. The simulation results show that compared with the A2C and Deep Q-Networks (DQN) algorithms, the proposed algorithm has significantly improved the convergence speed, T2T successful access rate, and the throughput.
  • loading
  • [1]
    AI Bo, CHENG Xiang, KÜRNER T, et al. Challenges toward wireless communications for high-speed railway[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2143–2158. doi: 10.1109/TITS.2014.2310771.
    [2]
    林俊亭, 王晓明, 党垚, 等. 城市轨道交通列车碰撞防护系统设计与研究[J]. 铁道科学与工程学报, 2015, 12(2): 407–413. doi: 10.19713/j.cnki.43-1423/u.2015.02.028.

    LIN Junting, WANG Xiaoming, DANG Yao, et al. Design and research of the improved train control system with collision avoidance system for urban mass transit[J]. Journal of Railway Science and Engineering, 2015, 12(2): 407–413. doi: 10.19713/j.cnki.43-1423/u.2015.02.028.
    [3]
    胡雪旸, 周庆华. 基于D2D的列控系统车车通信资源分配算法[J]. 铁道标准设计, 2019, 63(3): 153–157. doi: 10.13238/j.issn.1004-2954.201804080010.

    HU Xueyang and ZHOU Qinghua. T2T (Train to Train) communication resource allocation algorithm based on D2D[J]. Railway Standard Design, 2019, 63(3): 153–157. doi: 10.13238/j.issn.1004-2954.201804080010.
    [4]
    申滨, 孙万平, 张楠, 等. 基于加权二部图及贪婪策略的蜂窝网络D2D通信资源分配[J]. 电子与信息学报, 2023, 45(3): 1055–1064. doi: 10.11999/JEIT220029.

    SHEN Bin, SUN Wanping, ZHANG Nan, et al. Resource allocation based on weighted bipartite graph and greedy strategy for D2D communication in cellular networks[J]. Journal of Electronics &Information Technology, 2023, 45(3): 1055–1064. doi: 10.11999/JEIT220029.
    [5]
    HU Jinming, HENG Wei, ZHU Yaping, et al. Overlapping coalition formation games for joint interference management and resource allocation in D2D communications[J]. IEEE Access, 2018, 6: 6341–6349. doi: 10.1109/ACCESS.2018.2800159.
    [6]
    XIAO Yong, CHEN K C, YUEN C, et al. A Bayesian overlapping coalition formation game for device-to-device spectrum sharing in cellular networks[J]. IEEE Transactions on Wireless Communications, 2015, 14(7): 4034–4051. doi: 10.1109/TWC.2015.2416178.
    [7]
    高云波, 程璇, 李翠然, 等. T2T和T2G混合网络中的功率分配算法[J/OL]. 西南交通大学学报, 2022, 1–9.

    GAO Yunbo, CHENG Xuan, LI Cuiran, et al. Power allocation algorithm in T2T and T2G hybrid network[J/OL]. Journal of Southwest Jiaotong University, 2022, 1–9.
    [8]
    吕宏志. 城市轨道交通车车通信资源分配算法研究[D]. [硕士论文], 兰州交通大学, 2021.

    LV Hongzhi. Research on train to train communication resource allocation algorithm of urban rail transit[D]. [Master dissertation], Lanzhou Jiaotong University, 2021.
    [9]
    陈垚, 赵军辉, 张青苗, 等. 车车通信中通信模式选择与资源分配算法[J]. 计算机工程与应用, 2022, 58(10): 93–100. doi: 10.3778/j.issn.1002-8331.2012-0104.

    CHEN Yao, ZHAO Junhui, ZHANG Qingmiao, et al. Communication mode selection and resource allocation algorithm for train-to-train communication[J]. Computer Engineering and Applications, 2022, 58(10): 93–100. doi: 10.3778/j.issn.1002-8331.2012-0104.
    [10]
    TAN Junjie, LIANG Yingchang, ZHANG Lin, et al. Deep reinforcement learning for joint channel selection and power control in D2D networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1363–1378. doi: 10.1109/TWC.2020.3032991.
    [11]
    ZHAO Junhui, ZHANG Yang, NIE Yiwen, et al. Intelligent resource allocation for train-to-train communication: A multi-agent deep reinforcement learning approach[J]. IEEE Access, 2020, 8: 8032–8040. doi: 10.1109/ACCESS.2019.2963751.
    [12]
    赵军辉, 陈垚, 张青苗. 基于深度强化学习的车车通信智能频谱共享[J]. 铁道科学与工程学报, 2022, 19(3): 841–848. doi: 10.19713/j.cnki.43-1423/u.t20210364.

    ZHAO Junhui, CHEN Yao, and ZHANG Qingmiao. Intelligent spectrum sharing for train-to-train communication based on deep reinforcement learning[J]. Journal of Railway Science and Engineering, 2022, 19(3): 841–848. doi: 10.19713/j.cnki.43-1423/u.t20210364.
    [13]
    唐伦, 贺小雨, 王晓, 等. 基于异步优势演员-评论家学习的服务功能链资源分配算法[J]. 电子与信息学报, 2021, 43(6): 1733–1741. doi: 10.11999/JEIT200287.

    TANG Lun, HE Xiaoyu, WANG Xiao, et al. Resource allocation algorithm of service function chain based on asynchronous advantage actor-critic learning[J]. Journal of Electronics &Information Technology, 2021, 43(6): 1733–1741. doi: 10.11999/JEIT200287.
    [14]
    刘伟, 郑润泽, 张磊, 等. 基于A2C算法的低轨星座动态波束资源调度研究[J]. 中国空间科学技术, 2023, 43(3): 123–133. doi: 10.16708/j.cnki.1000-758X.2023.0045.

    LIU Wei, ZHENG Runze, ZHANG Lei, et al. Research of dynamic beam resource scheduling of LEO constellation based on A2C algorithm[J]. Chinese Space Science and Technology, 2023, 43(3): 123–133. doi: 10.16708/j.cnki.1000-758X.2023.0045.
    [15]
    WANG Xiaoxuan, LIU Liangjia, TANG Tao, et al. Enhancing communication-based train control systems through train-to-train communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(4): 1544–1561. doi: 10.1109/TITS.2018.2856635.
    [16]
    SUN Zhenfeng and NAKHAI M R. Channel selection and power control for D2D communication via online reinforcement learning[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (397) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return