Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
CHEN Tao, QIU Baochuan, XIAO Yihan, YANG Boyi. The Radar Signal Deinterleaving Method Base on Point Cloud Segmentation Network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391-1398. doi: 10.11999/JEIT230622
Citation: CHEN Tao, QIU Baochuan, XIAO Yihan, YANG Boyi. The Radar Signal Deinterleaving Method Base on Point Cloud Segmentation Network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391-1398. doi: 10.11999/JEIT230622

The Radar Signal Deinterleaving Method Base on Point Cloud Segmentation Network

doi: 10.11999/JEIT230622
Funds:  The National Defense Science and Technology Foundation Enhancement Program (2019-JCJQ-ZD-067-00), Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-063)
  • Received Date: 2023-06-25
  • Rev Recd Date: 2023-12-21
  • Available Online: 2023-12-27
  • Publish Date: 2024-04-24
  • To solve the problems of pixel points overlap and low processing efficiency in existing end-to-end radar signal deinterleaving methods based on image segmentation, an end-to-end sorting method using a point cloud segmentation network is proposed in this paper. Firstly, the Pulse Description Words (PWD) of radar pulse stream are mapped to point clouds. Then, the PointNet++ is used to segment each point according to its radiation source. Finally, the points with the same label are clustered to form pulse sets, and the radiation sources within each pulse set are then extracted to form corresponding emitter description words. The simulation results demonstrate that the proposed method can effectively separate unknown radar signals while maintaining reliability and stability, even in scenarios with pulse loss and false pulse interference. Additionally, the implementation efficiency of this method is higher because of the model with lightweight characteristics.
  • loading
  • [1]
    MARDIA H K. New techniques for the deinterleaving of repetitive sequences[J]. IEE Proceedings F (Radar and Signal Processing), 1989, 136(4): 149–154. doi: 10.1049/ip-f-2.1989.0025.
    [2]
    MILOJEVIĆ D J and POPOVIĆ B M. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(1): 98–104. doi: 10.1049/ip-f-2.1992.0012.
    [3]
    HUANG J Z, NG M K, RONG Hongqiang, et al. Automated variable weighting in k-means type clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657–668. doi: 10.1109/TPAMI.2005.95.
    [4]
    GADDAM S R, PHOHA V V, and BALAGANI K S. K-Means+ID3: A novel method for supervised anomaly detection by cascading K-Means clustering and ID3 decision tree learning methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 345–354. doi: 10.1109/TKDE.2007.44.
    [5]
    LIU Yanchao and ZHANG Qunying. Improved method for deinterleaving radar signals and estimating PRI values[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 506–514. doi: 10.1049/iet-rsn.2017.0516.
    [6]
    WEI Shunjun, QU Qizhen, WU Yue, et al. PRI modulation recognition based on squeeze-and-excitation networks[J]. IEEE Communications Letters, 2020, 24(5): 1047–1051. doi: 10.1109/LCOMM.2020.2970397.
    [7]
    HAN J W and PARK C H. A unified method for deinterleaving and PRI modulation recognition of radar pulses based on deep neural networks[J]. IEEE Access, 2021, 9: 89360–89375. doi: 10.1109/ACCESS.2021.3091309.
    [8]
    LIU Zhangmeng. Pulse deinterleaving for multifunction radars with hierarchical deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3585–3599. doi: 10.1109/TAES.2021.3079571.
    [9]
    XIANG Haoran, SHEN Furao, and ZHAO Jian. Deep ToA mask-based recursive radar pulse deinterleaving[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 989–1006. doi: 10.1109/TAES.2022.3193948.
    [10]
    张春杰, 刘俞辰, 司伟建. 基于多级箱与深度森林的雷达信号分选算法[J]. 电子学报, 2022, 50(6): 1351–1358. doi: 10.12263/DZXB.20210934.

    ZHANG Chunjie, LIU Yuchen, and SI Weijian. The radar signal deinterleaving algorithm based on Multi-Level bin and deep forest[J]. Acta Electronica Sinica, 2022, 50(6): 1351–1358. doi: 10.12263/DZXB.20210934.
    [11]
    姜在阳, 孙思月, 李华旺, 等. 一种基于JANET模型的雷达信号分选方法[J]. 中国科学院大学学报, 2021, 38(6): 825–831. doi: 10.7523/j.issn.2095-6134.2021.06.013.

    JIANG Zaiyang, SUN Siyue, LI Huawang, et al. A method for deinterleaving based on JANET[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(6): 825–831. doi: 10.7523/j.issn.2095-6134.2021.06.013.
    [12]
    ZHU Mengtao, WANG Shafei, and LI Yunjie. Model-Based representation and deinterleaving of mixed radar pulse sequences with neural machine translation network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1733–1752. doi: 10.1109/TAES.2021.3122411.
    [13]
    NUHOGLU M A, ALP Y K, ULUSOY M E C, et al. Image segmentation for radar signal deinterleaving using deep learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 541–554. doi: 10.1109/TAES.2022.3188225.
    [14]
    WANG Chao, SUN Liting, LIU Zhangmeng, et al. A radar signal deinterleaving method based on semantic segmentation with neural network[J]. IEEE Transactions on Signal Processing, 2022, 70: 5806–5821. doi: 10.1109/TSP.2022.3229630.
    [15]
    陈涛, 刘福悦, 李金鑫, 等. 基于深度分割的端到端雷达信号分选[J]. 系统工程与电子技术, 2023, 45(5): 1351–1358. doi: 10.12305/j.issn.1001-506X.2023.05.11.

    CHEN Tao, LIU Fuyue, LI Jinxin, et al. End-to-end radar signal sorting based on deep segmentation[J]. Systems Engineering and Electronics, 2023, 45(5): 1351–1358. doi: 10.12305/j.issn.1001-506X.2023.05.11.
    [16]
    QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114. doi: 10.5555/3295222.3295263.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (476) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return