Citation: | CHEN Tao, QIU Baochuan, XIAO Yihan, YANG Boyi. The Radar Signal Deinterleaving Method Base on Point Cloud Segmentation Network[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1391-1398. doi: 10.11999/JEIT230622 |
[1] |
MARDIA H K. New techniques for the deinterleaving of repetitive sequences[J]. IEE Proceedings F (Radar and Signal Processing), 1989, 136(4): 149–154. doi: 10.1049/ip-f-2.1989.0025.
|
[2] |
MILOJEVIĆ D J and POPOVIĆ B M. Improved algorithm for the deinterleaving of radar pulses[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(1): 98–104. doi: 10.1049/ip-f-2.1992.0012.
|
[3] |
HUANG J Z, NG M K, RONG Hongqiang, et al. Automated variable weighting in k-means type clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 657–668. doi: 10.1109/TPAMI.2005.95.
|
[4] |
GADDAM S R, PHOHA V V, and BALAGANI K S. K-Means+ID3: A novel method for supervised anomaly detection by cascading K-Means clustering and ID3 decision tree learning methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 345–354. doi: 10.1109/TKDE.2007.44.
|
[5] |
LIU Yanchao and ZHANG Qunying. Improved method for deinterleaving radar signals and estimating PRI values[J]. IET Radar, Sonar & Navigation, 2018, 12(5): 506–514. doi: 10.1049/iet-rsn.2017.0516.
|
[6] |
WEI Shunjun, QU Qizhen, WU Yue, et al. PRI modulation recognition based on squeeze-and-excitation networks[J]. IEEE Communications Letters, 2020, 24(5): 1047–1051. doi: 10.1109/LCOMM.2020.2970397.
|
[7] |
HAN J W and PARK C H. A unified method for deinterleaving and PRI modulation recognition of radar pulses based on deep neural networks[J]. IEEE Access, 2021, 9: 89360–89375. doi: 10.1109/ACCESS.2021.3091309.
|
[8] |
LIU Zhangmeng. Pulse deinterleaving for multifunction radars with hierarchical deep neural networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3585–3599. doi: 10.1109/TAES.2021.3079571.
|
[9] |
XIANG Haoran, SHEN Furao, and ZHAO Jian. Deep ToA mask-based recursive radar pulse deinterleaving[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 989–1006. doi: 10.1109/TAES.2022.3193948.
|
[10] |
张春杰, 刘俞辰, 司伟建. 基于多级箱与深度森林的雷达信号分选算法[J]. 电子学报, 2022, 50(6): 1351–1358. doi: 10.12263/DZXB.20210934.
ZHANG Chunjie, LIU Yuchen, and SI Weijian. The radar signal deinterleaving algorithm based on Multi-Level bin and deep forest[J]. Acta Electronica Sinica, 2022, 50(6): 1351–1358. doi: 10.12263/DZXB.20210934.
|
[11] |
姜在阳, 孙思月, 李华旺, 等. 一种基于JANET模型的雷达信号分选方法[J]. 中国科学院大学学报, 2021, 38(6): 825–831. doi: 10.7523/j.issn.2095-6134.2021.06.013.
JIANG Zaiyang, SUN Siyue, LI Huawang, et al. A method for deinterleaving based on JANET[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(6): 825–831. doi: 10.7523/j.issn.2095-6134.2021.06.013.
|
[12] |
ZHU Mengtao, WANG Shafei, and LI Yunjie. Model-Based representation and deinterleaving of mixed radar pulse sequences with neural machine translation network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 1733–1752. doi: 10.1109/TAES.2021.3122411.
|
[13] |
NUHOGLU M A, ALP Y K, ULUSOY M E C, et al. Image segmentation for radar signal deinterleaving using deep learning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 541–554. doi: 10.1109/TAES.2022.3188225.
|
[14] |
WANG Chao, SUN Liting, LIU Zhangmeng, et al. A radar signal deinterleaving method based on semantic segmentation with neural network[J]. IEEE Transactions on Signal Processing, 2022, 70: 5806–5821. doi: 10.1109/TSP.2022.3229630.
|
[15] |
陈涛, 刘福悦, 李金鑫, 等. 基于深度分割的端到端雷达信号分选[J]. 系统工程与电子技术, 2023, 45(5): 1351–1358. doi: 10.12305/j.issn.1001-506X.2023.05.11.
CHEN Tao, LIU Fuyue, LI Jinxin, et al. End-to-end radar signal sorting based on deep segmentation[J]. Systems Engineering and Electronics, 2023, 45(5): 1351–1358. doi: 10.12305/j.issn.1001-506X.2023.05.11.
|
[16] |
QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114. doi: 10.5555/3295222.3295263.
|