Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CHEN Tao, WANG Mengxin, HUANG Xiangsong. Time Difference of Arrival Passive Location Based on Salp Swarm Algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597. doi: 10.11999/JEIT170979
Citation: WANG Ze, HE Fangmin, LU Qiaran, ZHANG Yunshuo, MENG Jin, LI Yaxing. Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593

Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division

doi: 10.11999/JEIT230593
Funds:  The National Key R&D Program of China (2021YFF1500100), The National Natural Science Foundation of China (52177012), The National Science Fund for Distinguished Young Scholars (52025072), The National Defence Science and Technology Key Laboratory Found (614221722051301)
  • Received Date: 2023-06-14
  • Rev Recd Date: 2023-09-22
  • Available Online: 2023-09-28
  • Publish Date: 2023-11-28
  • In order to cope with broadband blocking interference, the integrated communication and interference cancellation system usually applies the interference cancellation technology based on subband division to improve the broadband interference suppression capability. To guarantee the communication performance meanwhile, it is required to reconstruct the subband signal to communication signal. In this paper, the combination of analog circuits and digital processing is used to build a subband division and signal reconstruction framework. The wide filtering in the first-stage is realized through analog filters to reduce the signal processing bandwidth. The narrow filtering in the second-stage is completed by digital filters to improve further the signal-to-noise ratio. This paper focusses on the problem of cross-subband reconstruction distortion in the communication signals’ subband division process. The time-frequency domain model of the subband division and signal reconstruction system is established to analyze the influence of the amplitude and phase inconsistency between subbands. To solve the inconsistency problem, the phase calibration method and the filter amplitude-frequency optimization method are proposed. The methods are to ensure the approximately distortion-free reconstruction of the cross-subband signal. Simulation and experiment results show that the amplitude-frequency response of the filter designed in the paper has good reconstruction accuracy. The phase calibration method solves the phase distortion problem of cross-subband signal reconstruction, and reduces effectively the bit error rate of reconstructed communication signals.
  • [1]
    CHENG C H and JAMES T S. An Introduction to Electronic Warfare; from the First Jamming to Machine Learning Techniques[M]. New York, USA: River Publishers, 2021: 97–101.
    [2]
    TEGLER J. Electronic warfare[J]. National Defense, 2022, 17(4): 107–109.
    [3]
    ZHANG Yongshun and JIA Xin. Adaptive interference suppression for DSSS communications based on compressive sensing[J]. International Journal of Communication Systems, 2018, 31(11): e3699. doi: 10.1002/dac.3699
    [4]
    ZHANG Xiaolu, QUAN Houde, CUI Peizhang, et al. Simulation and analysis of frequency hopping communication jamming[J]. Journal of Physics:Conference Series, 2020, 1550: 052025. doi: 10.1088/1742-6596/1550/5/052025
    [5]
    CHEN Xin, LI Xin, WU Weiyi, et al. Simulation and analysis of anti-jamming performance of frequency hopping communication system[J]. SPIE, 2020, 1606: 1160619.
    [6]
    GIUSTINIANO D, SCHALCH M, LIECHTI M, et al. Interference suppression in bandwidth hopping spread spectrum communications[C]. The 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Stockholm, Sweden, 2018: 134–143.
    [7]
    孟进, 何方敏, 李亚星, 等. L波段高速跳频数据链非合作干扰对消装置及方法[P]. 中国专利, 114513228B, 2022.

    MENG Jin, HE Fangmin, LI Yaxing, et al. L-band high-speed frequency hopping data link non cooperative interference cancellation device and method[P]. China Patent, 114513228B, 2022.
    [8]
    WU Renbiao, HUANG Jianyu, ZHANG Chuntian, et al. An adaptive receiver for constant modulus signal interference suppression in civil aviation air- ground communication[C]. 2007 Asia-Pacific Conference on Communications, Bangkok, Thailand, 2022: 487–489.
    [9]
    孟进, 王青, 何方敏, 等. Ku和Ka双频段卫通地面站的多频点干扰对消装置及方法[P]. 中国专利, 113922889B, 2022.

    MENG Jin, WANG Qing, HE Fangmin, et al. Multi frequency interference cancellation device and method for Ku and Ka dual band SATCOM ground stations[P]. China Patent, 113922889B, 2022.
    [10]
    孟进, 李亚星, 葛松虎, 等. 超短波电台干扰防护装置[P]. 中国专利, 113438035B, 2021.

    MENG Jin, LI Yaxing, GE Songhu, et al. Interference protection device for ultrashort wave radio[P]. China Patent, 113438035B, 2021.
    [11]
    ZHANG Yunshuo, HE Fangmin, LU Qiaran, et al. Wideband adaptive interference cancellation in spread-spectrum communication with subband bandwidth design[C]. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 2022: 347–351.
    [12]
    YANG Xiaopeng, LI Shuai, LIU Quanhua, et al. Robust wideband adaptive beamforming based on focusing transformation and steering vector compensation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2280–2284. doi: 10.1109/LAWP.2020.3029950
    [13]
    CHEN Xinzhu, SHU Ting, YU K B, et al. Implementation of an adaptive wideband digital array radar processor using subbanding for enhanced jamming cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 762–775. doi: 10.1109/TAES.2020.3042764
    [14]
    ZHANG Wenxu, YAO Yushuang, ZHAO Zhongkai, et al. Design and FPGA implementation of a novel efficient FRM-based channelized receiver structure[J]. IEEE Access, 2019, 7: 114778–114787. doi: 10.1109/ACCESS.2019.2935562
    [15]
    MURTHY C S and SRIDEVI K. Optimized DA-reconfigurable FIR filters for software defined radio channelizer applications[J]. Circuit World, 2021, 47(3): 252–261. doi: 10.1108/CW-11-2020-0332
    [16]
    SU Yu. Design of a narrow transition band dynamic digital channelized receiver without merging adjacent sub-channels[C]. The 4th International Seminar on Computer Technology, Mechanical and Electrical Engineering, Chengdu, China, 2020: 042044.
    [17]
    TIAN Rujun. Investigation of radio signal reconnaissance based on intermediate frequency channel receiver[C]. The 4th International Conference on Computer, Civil Engineering and Mechatronics, Sanya, China, 2021: 378–386.
    [18]
    ZHANG Wenxu, ZHANG Chunguang, ZHAO Zhongkai, et al. Low-complexity channelizer based on FRM for passive radar multi-channel wideband receiver[J]. Circuits,Systems,and Signal Processing, 2020, 39(1): 420–438. doi: 10.1007/s00034-019-01192-0
    [19]
    HRISTOVA V and CHERNEVA G. Coherent formation and receiving of frequency hopping spread spectrum signals[J]. SPIE, 2020: 1524: 115241K.
    [20]
    NGUYEN T Q and VAIDYANATHAN P P. Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1989, 37(5): 676–690. doi: 10.1109/29.17560
    [21]
    赵亮, 金梁, 刘双平, 等. 基于Dechirp和多相滤波结构的超宽带通信系统[J]. 电子与信息学报, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309

    ZHAO Liang, JIN Liang, LIU Shuangping, et al. Ultra wideband communication system based on Dechirp and polyphase filter structure[J]. Journal of Electronics&Information Technology, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309
    [22]
    张超, 马宏, 焦义文. 具有重构特性的原型滤波器的设计[J]. 雷达科学与技术, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016

    ZHANG Chao, MA Hong, and JIAO Yiwen. Design of a prototype filter with reconstruction characteristics[J]. Radar Science and Technology, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016
    [23]
    LIU Hongying, YI Caixia, and YANG Zhiming. Design perfect reconstruction cosine-modulated filter banks via quadratically constrained quadratic programming and least squares optimization[J]. Signal Processing, 2017, 141: 199–203. doi: 10.1016/j.sigpro.2017.06.009
    [24]
    SHAEEN K and ELIAS E. Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks - a review[J]. Journal of Signal Processing Systems, 2015, 81(2): 183–195. doi: 10.1007/s11265-014-0929-5
    [25]
    蒋俊正, 江庆, 欧阳缮. 一种设计近似完全重构非均匀余弦调制滤波器组的新算法[J]. 电子与信息学报, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260

    JIANG Junzheng, JIANG Qing, and OUYANG Shan. Novel method for designing near-perfect-reconstruction nonuniform cosine modulated filter banks[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260
    [26]
    CRUZ-ROLDAN F, MARTIN-MARTIN P, SAEZ-LANDETE J, et al. A fast windowing-based technique exploiting spline functions for designing modulated filter banks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2009, 56(1): 168–178. doi: 10.1109/TCSI.2008.925350
    [27]
    周芳, 水鹏朗. 基于相位调制的非均匀DFT调制滤波器组的构造算法[J]. 电子与信息学报, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040

    ZHOU Fang and SHUI Penglang. Construction of nonuniform DFT modulated filter banks via phase modulation[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040
    [28]
    KHA H H, TUAN H D, and NGUYEN T Q. Efficient design of cosine-modulated filter banks via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 966–976. doi: 10.1109/TSP.2008.2009268
    [29]
    KANG A S and VIG R. Performance analysis of near perfect reconstruction filter bank in cognitive radio environment[J]. International Journal of Advanced Networking and Applications, 2016, 8(3): 3070–3083.
    [30]
    焦义文, 马宏, 刘燕都, 等. 天线组阵频域合成方法最佳子带划分数分析[J]. 系统工程与电子技术, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02

    JIAO Yiwen, MA Hong, LIU Yandu, et al. Analysis on the optimal sub-band partition number in frequency domain combining for antenna arraying[J]. Systems Engineering and Electronics, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02
    [31]
    张文旭, 崔鑫磊, 陆满君. 一种基于MMF-FRM的低复杂度信道化接收机结构[J]. 电子学报, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763

    ZHANG Wenxu, CUI Xinlei, and LU Manjun. A low complexity channelized receiver structure based on MMF-FRM[J]. Acta Electronica Sinica, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763
    [32]
    赵廷刚, 王杰, 莘济豪, 等. 基于信道化架构的宽带I/Q不平衡校准技术[J]. 雷达科学与技术, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011

    ZHAO Tinggang, WANG Jie, SHEN Jihao, et al. Wideband I/Q imbalance calibration technique based on channelized architecture[J]. Radar Science and Technology, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011
    [33]
    HENTHORN S, O’FARRELL T, ANBIYAEI M R, et al. Concurrent multiband direct rf sampling receivers[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 550–562. doi: 10.1109/TWC.2022.3196279
  • Cited by

    Periodical cited type(49)

    1. 张宏,周大伟,陆丽,康小东. 基于改进的樽海鞘群算法的永磁同步电机多目标优化设计. 电机与控制应用. 2025(02): 221-230 .
    2. 徐良,田青云,文成,张海波,郭晶晶. 基于改进樽海鞘群算法的测试数据自动生成. 信息技术与信息化. 2024(01): 117-121 .
    3. 李辉,殷文明. 探索者变异樽海鞘算法及其应用. 数学的实践与认识. 2024(03): 151-159 .
    4. 蒙淑娇,晋良念. 基于改进鲸鱼优化的地面短基线单站无源定位方法. 无线电工程. 2024(07): 1739-1748 .
    5. 曹宁,严心娥,徐根祺,许又文,张正勃,杜倩云. 基于DEFA-LSSAR的水利工程边坡力学参数预测模型. 计算机与现代化. 2024(07): 106-111 .
    6. 史红伟,左越. 基于LPNN的无源ML-TDOA估计. 沈阳工业大学学报. 2024(06): 832-839 .
    7. 肖剑,刘经纬,胡欣,齐小刚. 基于改进非洲秃鹫算法的TDOA-AOA定位. 吉林大学学报(工学版). 2024(12): 3558-3567 .
    8. 陈一馨,张婷,刘永刚,陈晶. 基于改进樽海鞘群算法的提梁机主梁轻量化设计方法. 东北大学学报(自然科学版). 2023(02): 223-232 .
    9. 牛昊一 ,吴维敏 ,章庭棋 ,沈微 ,张涛 . 自适应樽海鞘群算法求解考虑运输时间的柔性作业车间调度. 浙江大学学报(工学版). 2023(07): 1267-1277 .
    10. 问轲,林晶,张学昌,刘永跃. 混沌策略和非线性收敛因子的核参数寻优算法. 机械科学与技术. 2023(09): 1490-1501 .
    11. 丁美芳,吴克晴,肖鹏. 多策略融合的黄金正弦樽海鞘群算法. 南京信息工程大学学报(自然科学版). 2023(06): 662-675 .
    12. 叶智慧,吴红梅,王佩,熊伟,郭颖,陈略,董志源. 基于量子海鸥算法的运载火箭回收舱段时差定位方法. 上海航天(中英文). 2023(06): 121-135 .
    13. 张铸,张仕杰,饶盛华,王静袁. 基于自适应正态云模型的引力樽海鞘群算法. 控制与决策. 2022(02): 344-352 .
    14. 韦子辉,王世昭,叶兴跃,马英杰,李小阳,方立德. 基于超宽带的TDOA相邻单元协同定位技术. 电子测量技术. 2022(01): 77-83 .
    15. 赵玉超,袁宏拓,孙铭. 基于单步加权最小二乘的战场集结定位算法. 河北科技大学学报. 2022(01): 42-49 .
    16. 高岳林,杨钦文,王晓峰,李嘉航,宋彦杰. 新型群体智能优化算法综述. 郑州大学学报(工学版). 2022(03): 21-30 .
    17. 马一鸣,石志东,赵康,贡常磊,单联海. 基于改进樽海鞘群算法的到达时间差定位. 上海大学学报(自然科学版). 2022(02): 238-249 .
    18. 段绍米,罗会龙,刘海鹏. 人群搜索和樽海鞘群的混合算法优化PID参数. 系统仿真学报. 2022(06): 1230-1246 .
    19. 方立德,王世昭,解云龙,李萌旭,韦子辉. 基于改进粒子群的TDOA三维定位解算方法. 现代电子技术. 2022(13): 45-50 .
    20. 汤安迪,韩统,徐登武,周欢,谢磊. 使用高斯分布估计策略的改进樽海鞘群算法. 系统工程与电子技术. 2022(07): 2229-2240 .
    21. 彭石燕,郑洪清. 复数编码的樽海鞘群算法及其应用. 广西民族大学学报(自然科学版). 2022(02): 81-86 .
    22. 范纯龙,童航. 樽海鞘算法在测试用例约简问题中的应用. 电脑编程技巧与维护. 2022(10): 8-10+15 .
    23. 余修武,黄露平,刘永,李佩. 融合柯西折射反向学习和变螺旋策略的WSN象群定位算法. 控制与决策. 2022(12): 3183-3189 .
    24. 刘树东,梁婷蓉,王燕,张艳. 一种提高水下目标被动定位性能的两步定位法. 天津城建大学学报. 2022(06): 460-466 .
    25. 刘小龙,许岩,徐维军. 基于统计引导和多项式差分学习的樽海鞘优化算法. 运筹与管理. 2021(01): 43-49 .
    26. 王振亚,姚立纲,蔡永武,张俊. 基于熵-流特征和樽海鞘群优化支持向量机的故障诊断方法. 振动与冲击. 2021(06): 107-114 .
    27. 刘景森,袁蒙蒙,李煜. 基于改进樽海鞘群算法求解工程优化设计问题. 系统仿真学报. 2021(04): 854-866 .
    28. 魏鹏飞,樊小朝,史瑞静,王维庆,闫亚东. 基于互补式集合经验模态分解和SSA-ELM的短期风电功率预测. 水力发电. 2021(05): 116-120 .
    29. 赵忠凯,刘楯,黄湘松. 无人机编队时差定位时的空间布局分析. 应用科技. 2021(02): 12-18+41 .
    30. 韩超杰,郝玉然,刘亚飞. 基于SSA-Otsu的彩色图像多阈值分割研究. 现代计算机. 2021(10): 108-111 .
    31. 陈连兴,牟永敏. 一种改进的樽海鞘群算法. 计算机应用研究. 2021(06): 1648-1652 .
    32. 蒋美琪,杨兴,罗聪敏. 基于反向学习与混合位置中心的樽海鞘算法. 西华大学学报(自然科学版). 2021(01): 17-21+74 .
    33. 杨兴,郭明昊,方霞,祝忠明,蒋美琪. 基于天牛须搜索自适应的樽海鞘算法. 计算机技术与发展. 2021(06): 1-6 .
    34. 唐菁敏,郑锦文,曲文博. 基于改进自适应乌鸦搜索算法的无源定位. 重庆邮电大学学报(自然科学版). 2021(03): 372-377 .
    35. 卓然,王未卿. 混沌映射与动态学习的自适应樽海鞘群算法. 计算机工程与设计. 2021(07): 1963-1972 .
    36. 刘景森,袁蒙蒙,左方. 面向全局搜索的自适应领导者樽海鞘群算法. 控制与决策. 2021(09): 2152-2160 .
    37. 田洪舟,陈思溢,黄辉先. 基于改进樽海鞘群算法的无线传感器网络节点定位. 传感器与微系统. 2021(09): 139-141+145 .
    38. 唐铁斌,刘炜. 基于改进樽海鞘群算法的SDN控制器部署算法. 计算机应用与软件. 2021(12): 291-297 .
    39. 孙光才,王裕旗,高昭昭,江帆,邢孟道,保铮. 一种基于短合成孔径的双星干涉精确定位方法. 电子与信息学报. 2020(02): 472-479 . 本站查看
    40. 张文彬. 基于天体运动更新机制的改进樽海鞘群算法. 上海电力大学学报. 2020(02): 195-200 .
    41. 陈忠云,张达敏,辛梓芸,张绘娟,闫威. 混沌精英质心拉伸机制的樽海鞘群算法. 计算机工程与应用. 2020(10): 44-50 .
    42. 林国营,卢世祥,郭昆健,高赐威,冯小峰. 基于主从博弈的电网公司需求响应补贴定价机制. 电力系统自动化. 2020(10): 59-68 .
    43. 王明超,董佳圆,李继影,高磊,聂永辉. 基于ISSA的STATCOM模型参数解耦辨识研究. 东北电力大学学报. 2020(01): 81-89 .
    44. 张达敏,陈忠云,辛梓芸,张绘娟,闫威. 基于疯狂自适应的樽海鞘群算法. 控制与决策. 2020(09): 2112-2120 .
    45. 陈忠云,张达敏,辛梓芸. 正弦余弦算法的樽海鞘群算法. 计算机应用与软件. 2020(09): 209-214 .
    46. 范千,陈振健,夏樟华. 一种基于折射反向学习机制与自适应控制因子的改进樽海鞘群算法. 哈尔滨工业大学学报. 2020(10): 183-191 .
    47. 马一鸣,石志东,赵康,贡常磊,单联海. 基于改进哈里斯鹰优化算法的TDOA定位. 计算机工程. 2020(12): 179-184 .
    48. 孙铭阳. 基于SSA-PNN的矿井提升机主轴装置故障诊断. 无线互联科技. 2019(09): 139-141+144 .
    49. 王丽,康飞. 基于樽海鞘群优化算法的裂缝图像分割. 电脑知识与技术. 2019(25): 223-224 .

    Other cited types(48)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (346) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return