Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WANG Ze, HE Fangmin, LU Qiaran, ZHANG Yunshuo, MENG Jin, LI Yaxing. Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593
Citation: WANG Ze, HE Fangmin, LU Qiaran, ZHANG Yunshuo, MENG Jin, LI Yaxing. Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3991-4002. doi: 10.11999/JEIT230593

Analysis and Optimization of Signal Reconstruction Modeling Based on Mixed Analog-digital Subband Division

doi: 10.11999/JEIT230593
Funds:  The National Key R&D Program of China (2021YFF1500100), The National Natural Science Foundation of China (52177012), The National Science Fund for Distinguished Young Scholars (52025072), The National Defence Science and Technology Key Laboratory Found (614221722051301)
  • Received Date: 2023-06-14
  • Rev Recd Date: 2023-09-22
  • Available Online: 2023-09-28
  • Publish Date: 2023-11-28
  • In order to cope with broadband blocking interference, the integrated communication and interference cancellation system usually applies the interference cancellation technology based on subband division to improve the broadband interference suppression capability. To guarantee the communication performance meanwhile, it is required to reconstruct the subband signal to communication signal. In this paper, the combination of analog circuits and digital processing is used to build a subband division and signal reconstruction framework. The wide filtering in the first-stage is realized through analog filters to reduce the signal processing bandwidth. The narrow filtering in the second-stage is completed by digital filters to improve further the signal-to-noise ratio. This paper focusses on the problem of cross-subband reconstruction distortion in the communication signals’ subband division process. The time-frequency domain model of the subband division and signal reconstruction system is established to analyze the influence of the amplitude and phase inconsistency between subbands. To solve the inconsistency problem, the phase calibration method and the filter amplitude-frequency optimization method are proposed. The methods are to ensure the approximately distortion-free reconstruction of the cross-subband signal. Simulation and experiment results show that the amplitude-frequency response of the filter designed in the paper has good reconstruction accuracy. The phase calibration method solves the phase distortion problem of cross-subband signal reconstruction, and reduces effectively the bit error rate of reconstructed communication signals.
  • loading
  • [1]
    CHENG C H and JAMES T S. An Introduction to Electronic Warfare; from the First Jamming to Machine Learning Techniques[M]. New York, USA: River Publishers, 2021: 97–101.
    [2]
    TEGLER J. Electronic warfare[J]. National Defense, 2022, 17(4): 107–109.
    [3]
    ZHANG Yongshun and JIA Xin. Adaptive interference suppression for DSSS communications based on compressive sensing[J]. International Journal of Communication Systems, 2018, 31(11): e3699. doi: 10.1002/dac.3699
    [4]
    ZHANG Xiaolu, QUAN Houde, CUI Peizhang, et al. Simulation and analysis of frequency hopping communication jamming[J]. Journal of Physics:Conference Series, 2020, 1550: 052025. doi: 10.1088/1742-6596/1550/5/052025
    [5]
    CHEN Xin, LI Xin, WU Weiyi, et al. Simulation and analysis of anti-jamming performance of frequency hopping communication system[J]. SPIE, 2020, 1606: 1160619.
    [6]
    GIUSTINIANO D, SCHALCH M, LIECHTI M, et al. Interference suppression in bandwidth hopping spread spectrum communications[C]. The 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Stockholm, Sweden, 2018: 134–143.
    [7]
    孟进, 何方敏, 李亚星, 等. L波段高速跳频数据链非合作干扰对消装置及方法[P]. 中国专利, 114513228B, 2022.

    MENG Jin, HE Fangmin, LI Yaxing, et al. L-band high-speed frequency hopping data link non cooperative interference cancellation device and method[P]. China Patent, 114513228B, 2022.
    [8]
    WU Renbiao, HUANG Jianyu, ZHANG Chuntian, et al. An adaptive receiver for constant modulus signal interference suppression in civil aviation air- ground communication[C]. 2007 Asia-Pacific Conference on Communications, Bangkok, Thailand, 2022: 487–489.
    [9]
    孟进, 王青, 何方敏, 等. Ku和Ka双频段卫通地面站的多频点干扰对消装置及方法[P]. 中国专利, 113922889B, 2022.

    MENG Jin, WANG Qing, HE Fangmin, et al. Multi frequency interference cancellation device and method for Ku and Ka dual band SATCOM ground stations[P]. China Patent, 113922889B, 2022.
    [10]
    孟进, 李亚星, 葛松虎, 等. 超短波电台干扰防护装置[P]. 中国专利, 113438035B, 2021.

    MENG Jin, LI Yaxing, GE Songhu, et al. Interference protection device for ultrashort wave radio[P]. China Patent, 113438035B, 2021.
    [11]
    ZHANG Yunshuo, HE Fangmin, LU Qiaran, et al. Wideband adaptive interference cancellation in spread-spectrum communication with subband bandwidth design[C]. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Chengdu, China, 2022: 347–351.
    [12]
    YANG Xiaopeng, LI Shuai, LIU Quanhua, et al. Robust wideband adaptive beamforming based on focusing transformation and steering vector compensation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2280–2284. doi: 10.1109/LAWP.2020.3029950
    [13]
    CHEN Xinzhu, SHU Ting, YU K B, et al. Implementation of an adaptive wideband digital array radar processor using subbanding for enhanced jamming cancellation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 762–775. doi: 10.1109/TAES.2020.3042764
    [14]
    ZHANG Wenxu, YAO Yushuang, ZHAO Zhongkai, et al. Design and FPGA implementation of a novel efficient FRM-based channelized receiver structure[J]. IEEE Access, 2019, 7: 114778–114787. doi: 10.1109/ACCESS.2019.2935562
    [15]
    MURTHY C S and SRIDEVI K. Optimized DA-reconfigurable FIR filters for software defined radio channelizer applications[J]. Circuit World, 2021, 47(3): 252–261. doi: 10.1108/CW-11-2020-0332
    [16]
    SU Yu. Design of a narrow transition band dynamic digital channelized receiver without merging adjacent sub-channels[C]. The 4th International Seminar on Computer Technology, Mechanical and Electrical Engineering, Chengdu, China, 2020: 042044.
    [17]
    TIAN Rujun. Investigation of radio signal reconnaissance based on intermediate frequency channel receiver[C]. The 4th International Conference on Computer, Civil Engineering and Mechatronics, Sanya, China, 2021: 378–386.
    [18]
    ZHANG Wenxu, ZHANG Chunguang, ZHAO Zhongkai, et al. Low-complexity channelizer based on FRM for passive radar multi-channel wideband receiver[J]. Circuits,Systems,and Signal Processing, 2020, 39(1): 420–438. doi: 10.1007/s00034-019-01192-0
    [19]
    HRISTOVA V and CHERNEVA G. Coherent formation and receiving of frequency hopping spread spectrum signals[J]. SPIE, 2020: 1524: 115241K.
    [20]
    NGUYEN T Q and VAIDYANATHAN P P. Two-channel perfect-reconstruction FIR QMF structures which yield linear-phase analysis and synthesis filters[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1989, 37(5): 676–690. doi: 10.1109/29.17560
    [21]
    赵亮, 金梁, 刘双平, 等. 基于Dechirp和多相滤波结构的超宽带通信系统[J]. 电子与信息学报, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309

    ZHAO Liang, JIN Liang, LIU Shuangping, et al. Ultra wideband communication system based on Dechirp and polyphase filter structure[J]. Journal of Electronics&Information Technology, 2011, 33(11): 2582–2587. doi: 10.3724/SP.J.1146.2011.00309
    [22]
    张超, 马宏, 焦义文. 具有重构特性的原型滤波器的设计[J]. 雷达科学与技术, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016

    ZHANG Chao, MA Hong, and JIAO Yiwen. Design of a prototype filter with reconstruction characteristics[J]. Radar Science and Technology, 2019, 17(3): 335–338,344. doi: 10.3969/j.issn.1672-2337.2019.03.016
    [23]
    LIU Hongying, YI Caixia, and YANG Zhiming. Design perfect reconstruction cosine-modulated filter banks via quadratically constrained quadratic programming and least squares optimization[J]. Signal Processing, 2017, 141: 199–203. doi: 10.1016/j.sigpro.2017.06.009
    [24]
    SHAEEN K and ELIAS E. Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks - a review[J]. Journal of Signal Processing Systems, 2015, 81(2): 183–195. doi: 10.1007/s11265-014-0929-5
    [25]
    蒋俊正, 江庆, 欧阳缮. 一种设计近似完全重构非均匀余弦调制滤波器组的新算法[J]. 电子与信息学报, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260

    JIANG Junzheng, JIANG Qing, and OUYANG Shan. Novel method for designing near-perfect-reconstruction nonuniform cosine modulated filter banks[J]. Journal of Electronics&Information Technology, 2016, 38(9): 2385–2390. doi: 10.11999/JEIT151260
    [26]
    CRUZ-ROLDAN F, MARTIN-MARTIN P, SAEZ-LANDETE J, et al. A fast windowing-based technique exploiting spline functions for designing modulated filter banks[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2009, 56(1): 168–178. doi: 10.1109/TCSI.2008.925350
    [27]
    周芳, 水鹏朗. 基于相位调制的非均匀DFT调制滤波器组的构造算法[J]. 电子与信息学报, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040

    ZHOU Fang and SHUI Penglang. Construction of nonuniform DFT modulated filter banks via phase modulation[J]. Journal of Electronics&Information Technology, 2017, 39(9): 2169–2174. doi: 10.11999/JEIT170040
    [28]
    KHA H H, TUAN H D, and NGUYEN T Q. Efficient design of cosine-modulated filter banks via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 966–976. doi: 10.1109/TSP.2008.2009268
    [29]
    KANG A S and VIG R. Performance analysis of near perfect reconstruction filter bank in cognitive radio environment[J]. International Journal of Advanced Networking and Applications, 2016, 8(3): 3070–3083.
    [30]
    焦义文, 马宏, 刘燕都, 等. 天线组阵频域合成方法最佳子带划分数分析[J]. 系统工程与电子技术, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02

    JIAO Yiwen, MA Hong, LIU Yandu, et al. Analysis on the optimal sub-band partition number in frequency domain combining for antenna arraying[J]. Systems Engineering and Electronics, 2020, 42(10): 2156–2163. doi: 10.3969/j.issn.1001-506X.2020.10.02
    [31]
    张文旭, 崔鑫磊, 陆满君. 一种基于MMF-FRM的低复杂度信道化接收机结构[J]. 电子学报, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763

    ZHANG Wenxu, CUI Xinlei, and LU Manjun. A low complexity channelized receiver structure based on MMF-FRM[J]. Acta Electronica Sinica, 2023, 51(3): 720–727. doi: 10.12263/DZXB.20210763
    [32]
    赵廷刚, 王杰, 莘济豪, 等. 基于信道化架构的宽带I/Q不平衡校准技术[J]. 雷达科学与技术, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011

    ZHAO Tinggang, WANG Jie, SHEN Jihao, et al. Wideband I/Q imbalance calibration technique based on channelized architecture[J]. Radar Science and Technology, 2023, 21(2): 199– 207, 214. doi: 10.3969/j.issn.1672-2337.2023.02.011
    [33]
    HENTHORN S, O’FARRELL T, ANBIYAEI M R, et al. Concurrent multiband direct rf sampling receivers[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 550–562. doi: 10.1109/TWC.2022.3196279
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (266) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return