Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIANG Hao, YE Ganhua, LU Ruimin, WANG Heng, WEI Peng. Anti-strong Jamming Polar Coding Optimization Method with Multiobjective Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4092-4100. doi: 10.11999/JEIT230572
Citation: LIANG Hao, YE Ganhua, LU Ruimin, WANG Heng, WEI Peng. Anti-strong Jamming Polar Coding Optimization Method with Multiobjective Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2023, 45(11): 4092-4100. doi: 10.11999/JEIT230572

Anti-strong Jamming Polar Coding Optimization Method with Multiobjective Reinforcement Learning

doi: 10.11999/JEIT230572
Funds:  The National Natural Science Foundation of China (62201596), The Research Planning Project of the National University of Defense Technology (ZK22-45)
  • Received Date: 2023-06-09
  • Rev Recd Date: 2023-11-03
  • Available Online: 2023-11-13
  • Publish Date: 2023-11-28
  • In order to improve the reliability and anti-jamming ability of information transmission for the Frequency-Hopping (FH) communication system, a Polar coding construction optimization method is proposed to adapt to the strong-jamming environment, which is based on a novel Polar coded slow FH communication system model. Firstly, the multi-objective reinforcement learning algorithm is designed for the hybrid channel containing normal state and jamming state, and then the information bit-channel sequence in the coding process is optimized. Consequently the error correction performance of the designed Polar codewords is improved. In addition, the complexity of algorithm is reduced by preprocessing the initialization and theoretically calculating the reward values. The simulation results show that the overall error performance of the proposed coding optimization method is better than those of conventional coding construction methods in the hybrid channel containing strong jamming. Compared with the 3rd Generation Partnership Project (3GPP) standard scheme in Fifth-Generation (5G) mobile communication systems, the obtained overall coding gain is up to 0.5 dB. Therefore the high-reliability and anti-jamming performance of Polar coded FH transmission is effectively improved.
  • loading
  • [1]
    ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    [2]
    ETSI. ETSI TS 38 212 V15.2. 0 5G; NR; Multiplexing and channel coding[S]. 2018.
    [3]
    NIU Kai, ZHANG Ping, DAI Jincheng, et al. A golden decade of polar codes: From basic principle to 5G applications[J]. China Communications, 2023, 20(2): 94–121. doi: 10.23919/JCC.2023.02.015
    [4]
    白宝明, 马啸, 陈文, 等. 面向B5G/6G的信息传输与接入技术专题序言[J]. 西安电子科技大学学报, 2020, 47(6): 1–4. doi: 10.19665/j.issn1001-2400.2020.06.001

    BAI Baoming, MA Xiao, CHEN Wen, et al. Editorial: Introduction to the special issue on information transmission and access technologies for B5G/6G[J]. Journal of Xidian University, 2020, 47(6): 1–4. doi: 10.19665/j.issn1001-2400.2020.06.001
    [5]
    DONG Yanfei, DAI Jincheng, NIU Kai, et al. Joint source-channel coding for 6G communications[J]. China Communications, 2022, 19(3): 101–115. doi: 10.23919/JCC.2022.03.007
    [6]
    魏浩, 张梦洁, 王东明. 6G极化码低时延译码方案[J]. 移动通信, 2022, 46(6): 64–71. doi: 10.3969/j.issn.1006-1010.2022.06.010

    WEI Hao, ZHANG Mengjie, and WANG Dongming. Low-latency decoding algorithm of polar codes for 6G wireless systems[J]. Mobile Communications, 2022, 46(6): 64–71. doi: 10.3969/j.issn.1006-1010.2022.06.010
    [7]
    王任之, 潘克刚, 赵瑞祥. 跳频抗干扰通信系统中LDPC码的编码优化设计[J]. 系统工程与电子技术, 2022, 44(11): 3548–3555. doi: 10.12305/j.issn.1001-506X.2022.11.31

    WANG Renzhi, PAN Kegang, and ZHAO Ruixiang. Optimal design of LDPC Codes in frequency hopping anti-jamming communication system[J]. Systems Engineering and Electronics, 2022, 44(11): 3548–3555. doi: 10.12305/j.issn.1001-506X.2022.11.31
    [8]
    孙康宁, 马林华, 茹乐, 等. 混合信道下LDPC码稳定条件分析及度序列优化[J]. 通信学报, 2016, 37(9): 168–174. doi: 10.11959/j.issn.1000-436x.2016188

    SUN Kangning, MA Linhua, RU Le, et al. Analysis of stability condition for LDPC codes and optimizing degree sequences over mixed channel[J]. Journal on Communications, 2016, 37(9): 168–174. doi: 10.11959/j.issn.1000-436x.2016188
    [9]
    刘士平, 马林华, 孙康宁, 等. 阻塞式干扰环境下LDPC编码跳频通信优化方案[J]. 火力与指挥控制, 2019, 44(2): 32–36,40. doi: 10.3969/j.issn.1002-0640.2019.02.007

    LIU Shiping, MA Linhua, SUN Kangning, et al. Optimizing of LDPC coded frequency-hopping communication over blocking interference[J]. Fire Control & Command Control, 2019, 44(2): 32–36,40. doi: 10.3969/j.issn.1002-0640.2019.02.007
    [10]
    MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519–521. doi: 10.1109/LCOMM.2009.090428
    [11]
    TRIFONOV P. Efficient design and decoding of Polar codes[J]. IEEE Transactions on Communications, 2012, 60(11): 3221–3227. doi: 10.1109/TCOMM.2012.081512.110872
    [12]
    HE Gaoning, BELFIORE J C, LAND I, et al. Beta-expansion: A theoretical framework for fast and recursive construction of Polar codes[C]. Proceedings of 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    [13]
    LI Jianxiu and CHENG Wenchi. Stacked denoising autoencoder enhanced Polar codes over Rayleigh fading channels[J]. IEEE Wireless Communications Letters, 2020, 9(3): 354–357. doi: 10.1109/LWC.2019.2954907
    [14]
    LIAO Yun, HASHEMI S A, CIOFFI J M, et al. Construction of polar codes with reinforcement learning[J]. IEEE Transactions on Communications, 2022, 70(1): 185–198. doi: 10.1109/TCOMM.2021.3120274
    [15]
    TENG C F and WU A Y A. Convolutional neural network-aided tree-based bit-flipping framework for polar decoder using imitation learning[J]. IEEE Transactions on Signal Processing, 2021, 69: 300–313. doi: 10.1109/TSP.2020.3040897
    [16]
    LU Yang, ZHAO Mingmin, LEI Ming, et al. Deep learning aided SCL decoding of polar codes with shifted-pruning[J]. China Communications, 2023, 20(1): 153–170. doi: 10.23919/JCC.2023.01.013
    [17]
    KORADA S B and URBANKE R L. Polar codes are optimal for lossy source coding[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1751–1768. doi: 10.1109/TIT.2010.2040961
    [18]
    LIU Chunming, XU Xin, and HU Dewen. Multiobjective reinforcement learning: A comprehensive overview[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(3): 385–398.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (391) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return