Citation: | HAN Zongwang, YANG Han, WU Shiqing, CHEN Long. Action Recognition Network Combining Spatio-Temporal Adaptive Graph Convolution and Transformer[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2587-2595. doi: 10.11999/JEIT230551 |
[1] |
石跃祥, 朱茂清. 基于骨架动作识别的协作卷积Transformer网络[J]. 电子与信息学报, 2023, 45(4): 1485–1493. doi: 10.11999/JEIT220270.
SHI Yuexiang and ZHU Maoqing. Collaborative convolutional transformer network based on skeleton action recognition[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1485–1493. doi: 10.11999/JEIT220270.
|
[2] |
GEDAMU K, JI Yanli, GAO Lingling, et al. Relation-mining self-attention network for skeleton-based human action recognition[J]. Pattern Recognition, 2023, 139: 109455. doi: 10.1016/j.patcog.2023.109455.
|
[3] |
GUO Hongling, ZHANG Zhitian, YU Run, et al. Action recognition based on 3D skeleton and LSTM for the monitoring of construction workers’ safety harness usage[J]. Journal of Construction Engineering and Management, 2023, 149(4): 04023015. doi: 10.1061/JCEMD4.COENG-12542.
|
[4] |
VEMULAPALLI R, ARRATE F, and CHELLAPPA R. Human action recognition by representing 3D skeletons as points in a lie group[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 588–595. doi: 10.1109/CVPR.2014.82.
|
[5] |
HEDEGAARD L, HEIDARI N, and IOSIFIDIS A. Continual spatio-temporal graph convolutional networks[J]. Pattern Recognition, 2023, 140: 109528. doi: 10.1016/j.patcog.2023.109528.
|
[6] |
YU B X B, LIU Yan, ZHANG Xiang, et al. Mmnet: A model-based multimodal network for human action recognition in RGB-D videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3522–3538. doi: 10.1109/TPAMI.2022.3177813.
|
[7] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition[C]. The 15th Asian Conference on Computer Vision, Kyoto, Japan, 2021. doi: 10.1007/978-3-030-69541-5_3.
|
[8] |
陈莹, 龚苏明. 改进通道注意力机制下的人体行为识别网络[J]. 电子与信息学报, 2021, 43(12): 3538–3545. doi: 10.11999/JEIT200431.
CHEN Ying and GONG Suming. Human action recognition network based on improved channel attention mechanism[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3538–3545. doi: 10.11999/JEIT200431.
|
[9] |
CHENG Qin, REN Ziliang, CHENG Jun, et al. Skeleton-based action recognition with multi-scale spatial-temporal convolutional neural network[C]. 2021 IEEE International Conference on Real-time Computing and Robotics, Xining, China, 2021: 957–962. doi: 10.1109/RCAR52367.2021.9517665.
|
[10] |
LI Lin, ZHANG Wu, ZHANG Zhaoxiang, et al. Skeleton-based relational modeling for action recognition[J]. arXiv preprint arXiv: 1805.02556, 2018.
|
[11] |
LI Shuai, LI Wangqiang, COOK C, et al. Independently recurrent neural network (IndRNN): Building a longer and deeper RNN[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5457–5466. doi: 10.1109/CVPR.2018.00572.
|
[12] |
CHENG Ke, ZHANG Yifan, HE Xiangyu, et al. Skeleton-based action recognition with shift graph convolutional network[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 183–192. doi: 10.1109/CVPR42600.2020.00026.
|
[13] |
KIM T S and REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1623–1631. doi: 10.1109/CVPRW.2017.207.
|
[14] |
KE Q H, BENNAMOUN M, AN S J, et al. A new representation of skeleton sequences for 3D action recognition[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3288–3297. doi: 10.1109/CVPR.2017.486.
|
[15] |
LIU Mengyuan, LIU Hong, and CHEN Chen. Enhanced skeleton visualization for view invariant human action recognition[J]. Pattern Recognition, 2017, 68: 346–362. doi: 10.1016/j.patcog.2017.02.030.
|
[16] |
DU Yong, FU Yun, and WANG Liang. Skeleton based action recognition with convolutional neural network[C]. 2015 3rd IAPR Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 2015: 579–583. doi: 10.1109/ACPR.2015.7486569.
|
[17] |
DUAN Haodong, ZHAO Yue, CHEN Kai, et al. Revisiting skeleton-based action recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2969–2978. doi: 10.1109/CVPR52688.2022.00298.
|
[18] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, USA, 2018: 912.
|
[19] |
TANG Yansong, TIAN Yi, LU Jiwen, et al. Deep progressive reinforcement learning for skeleton-based action recognition[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5323–5332. doi: 10.1109/CVPR.2018.00558.
|
[20] |
BASAK H, KUNDU R, SINGH P K, et al. A union of deep learning and swarm-based optimization for 3D human action recognition[J]. Scientific Reports, 2022, 12(1): 5494. doi: 10.1038/s41598-022-09293-8.
|
[21] |
CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7291–7299. doi: 10.1109/CVPR.2017.143.
|
[22] |
CHEN Yuxin, ZHANG Ziqi, YUAN Chunfeng, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 13359–13368. doi: 10.1109/ICCV48922.2021.01311.
|
[23] |
SHAHROUDY A, LIU Jun, NG T T, et al. NTU RGB+d: A large scale dataset for 3D human activity analysis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1010–1019. doi: 10.1109/CVPR.2016.115.
|
[24] |
SEIDENARI L, VARANO V, BERRETTI S, et al. Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, USA, 2013: 479–485. doi: 10.1109/CVPRW.2013.77.
|
[25] |
SLAMA R, WANNOUS H, DAOUDI M, et al. Accurate 3D action recognition using learning on the Grassmann manifold[J]. Pattern Recognition, 2015, 48(2): 556–567. doi: 10.1016/j.patcog.2014.08.011.
|
[26] |
SHI Lei, ZHANG Yifan, CHENG Jian, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks[J]. IEEE Transactions on Image Processing, 2020, 29: 9532–9545. doi: 10.1109/TIP.2020.3028207.
|
[27] |
STIEFMEIER T, ROGGEN D, OGRIS G, et al. Wearable activity tracking in car manufacturing[J]. IEEE Pervasive Computing, 2008, 7(2): 42–50. doi: 10.1109/MPRV.2008.40.
|
[28] |
WANG Limin, XIONG Yuanjun, WANG Zhe, et al. Temporal segment networks: Towards good practices for deep action recognition[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 20–36. doi: 10.1007/978-3-319-46484-8_2.
|
[29] |
JIANG Wenchao and YIN Zhaozheng. Human activity recognition using wearable sensors by deep convolutional neural networks[C]. The 23rd ACM international conference on Multimedia, Brisbane, Australia, 2015: 1307–1310. doi: 10.1145/2733373.2806333.
|
[30] |
TAO Wenjin, LEU M C, and YIN Zhaozheng. Multi-modal recognition of worker activity for human-centered intelligent manufacturing[J]. Engineering Applications of Artificial Intelligence, 2020, 95: 103868. doi: 10.1016/j.engappai.2020.103868.
|
[31] |
SONG Yifan, ZHANG Zhang, SHAN Caifeng, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1474–1488. doi: 10.1109/TPAMI.2022.3157033.
|