Citation: | XUE Jian, ZHAO Lin, XIANG Xiancai, LÜ Ke, HONG Chen, ZHANG Baolin, YAN Yan, WANG Yong. A Review of the Research on UAV Swarm Confrontation under Incomplete Information[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1157-1172. doi: 10.11999/JEIT230544 |
[1] |
ZUO Zongyu, LIU Cunjia, HAN Qinglong, et al. Unmanned aerial vehicles: Control methods and future challenges[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(4): 601–614. doi: 10.1109/JAS.2022.105410.
|
[2] |
AYAMGA M, AKABA S, and NYAABA A A. Multifaceted applicability of drones: A review[J]. Technological Forecasting and Social Change, 2021, 167: 120677. doi: 10.1016/j.techfore.2021.120677.
|
[3] |
HASSANALIAN M and ABDELKEFI A. Classifications, applications, and design challenges of drones: A review[J]. Progress in Aerospace Sciences, 2017, 91: 99–131. doi: 10.1016/j.paerosci.2017.04.003.
|
[4] |
ELMESEIRY N, ALSHAER N, and ISMAIL T. A detailed survey and future directions of Unmanned Aerial Vehicles (UAVs) with potential applications[J]. Aerospace, 2021, 8(12): 363. doi: 10.3390/aerospace8120363.
|
[5] |
CLARKE R A and KNAKE R K. The Fifth Domain: Defending Our Country, Our Companies, and Ourselves in the Age of Cyber Threats[M]. London: Penguin Press, 2019: 58.
|
[6] |
WU Ao, YANG Rennong, LIANG Xiaolong, et al. Visual range maneuver decision of unmanned combat aerial vehicle based on fuzzy reasoning[J]. International Journal of Fuzzy Systems, 2022, 24(1): 519–536. doi: 10.1007/s40815-021-01158-y.
|
[7] |
ZHANG Lin, ZHU Yian, SHI Xianchen, et al. A situation assessment method with an improved fuzzy deep neural network for multiple UAVs[J]. Information, 2020, 11(4): 194. doi: 10.3390/INFO11040194.
|
[8] |
HUANG Changqiang, DONG Kangsheng, HUANG Hanqiao, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86–97. doi: 10.21629/JSEE.2018.01.09.
|
[9] |
XIE Lei, DING Dali, WEI Zhenglei, et al. Moving time UCAV maneuver decision based on the dynamic relational weight algorithm and trajectory prediction[J]. Mathematical Problems in Engineering, 2021, 2021: 6641567. doi: 10.1155/2021/6641567.
|
[10] |
高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877.
GAO Yang, LI Dongsheng, and CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of Electronics & Information Technology, 2018, 40(6): 1271–1278. doi: 10.11999/JEIT170877.
|
[11] |
ENDSLEY M R. Toward a theory of situation awareness in dynamic systems[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society, 1995, 37(1): 32–64. doi: 10.1518/001872095779049543.
|
[12] |
SHIN H, LEE J, KIM H, et al. An autonomous aerial combat framework for two-on-two engagements based on basic fighter maneuvers[J]. Aerospace Science and Technology, 2018, 72: 305–315. doi: 10.1016/j.ast.2017.11.014.
|
[13] |
高杨, 李东生, 柳向. 无人机集群协同态势觉察一致性评估[J]. 电子学报, 2019, 47(1): 1906–19. doi: 10.3969/j.issn.0372-2112.2019.01.025.
GAO Yang, LI Dong-sheng, LIU Xiang. UAV Swarm Cooperative Situation Perception Consensus Evaluation[J]. Acta Electonica Sinica, 2019, 47(1): 1906–19. doi: 10.3969/j.issn.0372-2112.2019.01.025.
|
[14] |
唐帅文, 周志杰, 姜江, 等. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(S2): 724233. doi: 10.7527/S1000-6893.2020.24233.
TANG Shuaiwen, ZHOU Zhijie, JIANG Jiang, et al. Consensus evaluation of UAV swarm cooperative situation awareness considering perturbation[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41(S2): 724233. doi: 10.7527/S1000-6893.2020.24233.
|
[15] |
GAO Yang and LI Dongsheng. Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism[J]. Knowledge-Based Systems, 2020, 188: 105034. doi: 10.1016/j.knosys.2019.105034.
|
[16] |
韩博文, 姚佩阳, 钟赟, 等. 基于QABC-IFMADM算法的有人/无人机编队作战威胁评估[J]. 电子学报, 2018, 46(7): 1584–1592. doi: 10.3969/j.issn.0372-2112.2018.07.007.
HAN Bowen, YAO Peiyang, ZHONG Yun, et al. Threat assessment of manned/unmanned aerial vehicle formation based on QABC-IFMADM algorithm[J]. Acta Electronica Sinica, 2018, 46(7): 1584–1592. doi: 10.3969/j.issn.0372-2112.2018.07.007.
|
[17] |
ZHANG Kun, KONG Weiren, LIU Peipei, et al. Assessment and sequencing of air target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 305–310. doi: 10.21629/JSEE.2018.02.11.
|
[18] |
高杨, 黄仰超, 程国兵, 等. 直觉模糊信息下基于VIKOR和三支决策的多目标威胁评估方法[J]. 电子学报, 2021, 49(3): 542–549. doi: 10.12263/DZXB.20190150.
GAO Yang, HUANG Yangchao, CHENG Guobing, et al. Multi-target threat assessment method based on VIKOR and three-way decisions under intuitionistic fuzzy information[J]. Acta Electronica Sinica, 2021, 49(3): 542–549. doi: 10.12263/DZXB.20190150.
|
[19] |
GAO Yang, LI Dongsheng, and ZHONG Hua. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103276. doi: 10.1016/j.engappai.2019.103276.
|
[20] |
ZHAO Ruojing, YANG Fengbao, JI Linna, et al. Dynamic air target threat assessment based on interval-valued intuitionistic fuzzy sets, game theory, and evidential reasoning methodology[J]. Mathematical Problems in Engineering, 2021, 2021: 6652706. doi: 10.1155/2021/6652706.
|
[21] |
ZHAO Ruojing, YANG Fengbao, and JI Linna. An extended fuzzy CPT-TODIM model based on possibility theory and its application to air target dynamic threat assessment[J]. IEEE Access, 2022, 10: 21655–21669. doi: 10.1109/ACCESS.2022.3153361.
|
[22] |
GAO Yang and LI Dongsheng. UAV swarm cooperative situation perception consensus evaluation method based on three-parameter interval number and heronian mean operator[J]. IEEE Access, 2018, 6: 73328–73340. doi: 10.1109/ACCESS.2018.2882409.
|
[23] |
孟光磊, 周铭哲, 朴海音, 等. 基于协同战术识别的双机编队威胁评估方法[J]. 系统工程与电子技术, 2020, 42(10): 2285–2293. doi: 10.3969/j.issn.1001-506X.2020.10.17.
MENG Guanglei, ZHOU Mingzhe, PIAO Haiyin, et al. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition[J]. Systems Engineering and Electronics, 2020, 42(10): 2285–2293. doi: 10.3969/j.issn.1001-506X.2020.10.17.
|
[24] |
GAO Yang and LI Dongsheng. Consensus evaluation method of multi-ground-target threat for unmanned aerial vehicle swarm based on heterogeneous group decision making[J]. Computers & Electrical Engineering, 2019, 74: 223–232. doi: 10.1016/j.compeleceng.2019.01.019.
|
[25] |
LIU Chang, SUN Shaoshan, TAO Chenggang, et al. Sliding mode control of multi-agent system with application to UAV air combat[J]. Computers & Electrical Engineering, 2021, 96: 107491. doi: 10.1016/j.compeleceng.2021.107491.
|
[26] |
PAN Qian, ZHOU Deyun, HUANG Jichuan, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]. 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 2017: 726–731. doi: 10.1109/ICInfA.2017.8079001.
|
[27] |
XI Zhifei, XU An, KOU Yingxin, et al. Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 498–516. doi: 10.23919/JSEE.2021.000042.
|
[28] |
LIU D, ZONG Q, ZHANG X, et al. Game of drones: Intelligent online decision making of Multi-UAV confrontation[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(2): 2086–210. doi: 10.1109/TETCI.2024.3360282.
|
[29] |
TAN Mulai, TANG Andi, DING Dali, et al. Autonomous air combat maneuvering decision method of UCAV based on LSHADE-TSO-MPC under enemy trajectory prediction[J]. Electronics, 2022, 11(20): 3383. doi: 10.3390/electronics11203383.
|
[30] |
YANG Zhen, SUN Zhixiao, PIAO Haiyin, et al. An autonomous attack guidance method with high aiming precision for UCAV based on adaptive fuzzy control under model predictive control framework[J]. Applied Sciences, 2020, 10(16): 5677. doi: 10.3390/app10165677.
|
[31] |
ZHOU Tongle, CHEN Mou, WANG Yuhui, et al. Information entropy-based intention prediction of aerial targets under uncertain and incomplete information[J]. Entropy, 2020, 22(3): 279. doi: 10.3390/e22030279.
|
[32] |
刘钻东, 陈谋, 吴庆宪, 等. 非完备信息下无人机空战目标意图预测[J]. 中国科学:信息科学, 2020, 50(5): 704–717. doi: 10.1360/SSI-2019-0106.
LIU Zuandong, CHEN Mou, WU Qingxian, et al. Prediction of unmanned aerial vehicle target intention under incomplete information[J]. Scientia Sinica Informationis, 2020, 50(5): 704–717. doi: 10.1360/SSI-2019-0106.
|
[33] |
WANG Xingyu, YANG Zhen, ZHAN Guang, et al. Tactical intention recognition method of air combat target based on BiLSTM network[C]. 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 2022: 63–67. doi: 10.1109/ICUS55513.2022.9986667.
|
[34] |
XIA Jingyang, CHEN Mengqi, and FANG Weiguo. Air combat intention recognition with incomplete information based on decision tree and GRU network[J]. Entropy, 2023, 25(4): 671. doi: 10.3390/e25040671.
|
[35] |
WANG Yinhan, WANG Jiang, FAN Shipeng, et al. Quick intention identification of an enemy aerial target through information classification processing[J]. Aerospace Science and Technology, 2023, 132: 108005. doi: 10.1016/j.ast.2022.108005.
|
[36] |
MENG Haodong, SUN Chong, FENG Yunchong, et al. One-to-one close air combat maneuver decision method based on target maneuver intention prediction[C]. 2022 IEEE International Conference on Unmanned Systems (ICUS), Guangzhou, China, 2022: 1454–1465. doi: 10.1109/ICUS55513.2022.9987174.
|
[37] |
MENG Guanglei, ZHAO Runnan, WANG Biao, et al. Target tactical intention recognition in multiaircraft cooperative air combat[J]. International Journal of Aerospace Engineering, 2021, 2021: 9558838. doi: 10.1155/2021/9558838.
|
[38] |
马钰棠, 孙鹏, 张杰勇, 等. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747–3755. doi: 10.12305/j.issn.1001-506X.2022.12.19.
MA Yutang, SUN Peng, ZHANG Jieyong, et al. Air group intention recognition method under imbalance samples[J]. Systems Engineering and Electronics, 2022, 44(12): 3747–3755. doi: 10.12305/j.issn.1001-506X.2022.12.19.
|
[39] |
WANG Siyuan, WANG Gang, FU Qiang, et al. STABC-IR: An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism[J]. Chinese Journal of Aeronautics, 2023, 36(3): 316–334. doi: 10.1016/j.cja.2022.11.018.
|
[40] |
严飞, 祝小平, 周洲, 等. 考虑同时攻击约束的多异构无人机实时任务分配[J]. 中国科学:信息科学, 2019, 49(5): 555–569. doi: 10.1360/N112018-00338.
YAN Fei, ZHU Xiaoping, ZHOU Zhou, et al. Real-time task allocation for a heterogeneous multi-UAV simultaneous attack[J]. Scientia Sinica Informationis, 2019, 49(5): 555–569. doi: 10.1360/N112018-00338.
|
[41] |
ZHEN Ziyang, WEN Liangdong, WANG Bolan, et al. Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm[J]. Aerospace Science and Technology, 2021, 119: 107054. doi: 10.1016/j.ast.2021.107054.
|
[42] |
王峰, 黄子路, 韩孟臣, 等. 基于KnCMPSO算法的异构无人机协同多任务分配[J]. 自动化学报, 2023, 49(2): 399–414. doi: 10.16383/j.aas.c210696.
WANG Feng, HUANG Zilu, HAN Mengchen, et al. A knee point based coevolution multi-objective particle swarm optimization algorithm for heterogeneous UAV cooperative multi-task allocation[J]. Acta Automatica Sinica, 2023, 49(2): 399–414. doi: 10.16383/j.aas.c210696.
|
[43] |
ZHAO Xinyi, ZONG Quan, TIAN Bailing, et al. Fast task allocation for heterogeneous unmanned aerial vehicles through reinforcement learning[J]. Aerospace Science and Technology, 2019, 92: 588–594. doi: 10.1016/j.ast.2019.06.024.
|
[44] |
JIA Zhenyue, YU Jianqiao, AI Xiaolin, et al. Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm[J]. Aerospace Science and Technology, 2018, 76: 112–125. doi: 10.1016/j.ast.2018.01.025.
|
[45] |
赵玉亮, 宋业新, 张建军, 等. 基于多策略融合粒子群的无人机对地攻击模糊博弈决策[J]. 控制理论与应用, 2019, 36(10): 1644–1652. doi: 10.7641/CTA.2019.80437.
ZHAO Yuliang, SONG Yexin, ZHANG Jianjun, et al. Fuzzy game decision-making of unmanned aerial vehicles air-to-ground attack based on the particle swarm optimization integrating multiply strategies[J]. Control Theory Applications, 2019, 36(10): 1644–1652. doi: 10.7641/CTA.2019.80437.
|
[46] |
张安, 杨咪, 毕文豪, 等. 基于多策略GWO算法的不确定环境下异构多无人机任务分配[J]. 航空学报, 2023, 44(8): 327115. doi: 10.7527/S1000-6893.2022.2711.
ZHANG An, YANG Mi, BI Wenhao, et al. Task allocation of heterogeneous multi-UAVs in uncertain environment based on multi-strategy integrated GWO[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(8): 327115. doi: 10.7527/S1000-6893.2022.2711.
|
[47] |
LIU Da, DOU Liquan, ZHANG Ruilong, et al. Multi-agent reinforcement learning-based coordinated dynamic task allocation for heterogenous UAVs[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4372–4383. doi: 10.1109/TVT.2022.3228198.
|
[48] |
SUN Jiayi, TANG Jun, and LAO Songyang. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[J]. IEEE Access, 2017, 5: 18382–18390. doi: 10.1109/ACCESS.2017.2746752.
|
[49] |
HEIDARI H and SASKA M. Collision-free trajectory planning of multi-rotor UAVs in a wind condition based on modified potential field[J]. Mechanism and Machine Theory, 2021, 156: 104140. doi: 10.1016/j.mechmachtheory.2020.104140.
|
[50] |
WU Enming, SUN Yidong, HUANG Jianyu, et al. Multi UAV cluster control method based on virtual core in improved artificial potential field[J]. IEEE Access, 2020, 8: 131647–131661. doi: 10.1109/ACCESS.2020.3009972.
|
[51] |
SELVAM P K, RAJA G, RAJAGOPAL V, et al. Collision-free path planning for UAVs using efficient artificial potential field algorithm[C]. 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021: 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9448937.
|
[52] |
PAN Zhenhua, ZHANG Chengxi, XIA Yuanqing, et al. An improved artificial potential field method for path planning and formation control of the multi-UAV systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 1129–1133. doi: 10.1109/TCSII.2021.3112787.
|
[53] |
SINGLA A, PADAKANDLA S, and BHATNAGAR S. Memory-based deep reinforcement learning for obstacle avoidance in UAV with limited environment knowledge[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 107–118. doi: 10.1109/TITS.2019.2954952.
|
[54] |
申燕凯, 段海滨, 邓亦敏, 等. 仿鸽群被动式惯性应急避障的无人机集群飞行验证[J]. 中国科学: 信息科学, 2019, 49(10): 1343–1352. doi: 10.1360/N112018-00333.
SHEN Yankai, DUAN Haibin, DENG Yimin, et al. Verification of a UAV swarm flight simulating the passive inertial emergency obstacle avoidance behavior of a pigeon flock[J]. Scientia Sinica Informationis, 2019, 49: 1343–1352. doi: 10.1360/N112018-00333.
|
[55] |
姜龙亭, 魏瑞轩, 张启瑞, 等. 基于群智机理的集群防碰撞控制[J]. 航空学报, 2020, 41(S2): 724294. doi: 10.7527/S1000-6893.2020.24294.
JIANG Longting, WEI Ruixuan, ZHANG Qirui, et al. Anti-collision control of UAVs based on swarm intelligence mechanism[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41(S2): 724294. doi: 10.7527/S1000-6893.2020.24294.
|
[56] |
WU Yu, GOU Jinzhan, HU Xinting, et al. A new consensus theory-based method for formation control and obstacle avoidance of UAVs[J]. Aerospace Science and Technology, 2020, 107: 106332. doi: 10.1016/j.ast.2020.106332.
|
[57] |
蔡星娟, 胡钊鸣, 张志霞, 等. 基于高维多目标优化的多无人机协同航迹规划[J]. 中国科学:信息科学, 2021, 51(6): 985–996. doi: 10.1360/SSI-2020-0218.
CAI Xingjuan, HU Zhaoming, ZHANG Zhixia, et al. Multi-UAV coordinated path planning based on many-objective optimization[J]. Scientia Sinica Informationis, 2021, 51(6): 985–996. doi: 10.1360/SSI-2020-0218.
|
[58] |
左燕, 刘雪娇, 彭冬亮. 距离相关噪声AOA协同定位下无人机路径优化方法[J]. 电子与信息学报, 2021, 43(4): 1192–1198. doi: 10.11999/JEIT200078.
ZUO Yan, LIU Xuejiao, and PENG Dongliang. UAV path planning for AOA-based source localization with distance-dependent noises[J]. Journal of Electronics & Information Technology, 2021, 43(4): 1192–1198. doi: 10.11999/JEIT200078.
|
[59] |
LI Bo, YANG Zhipeng, CHEN Daqing, et al. Maneuvering target tracking of UAV based on MN-DDPG and transfer learning[J]. Defence Technology, 2021, 17(2): 457–466. doi: 10.1016/j.dt.2020.11.014.
|
[60] |
王祝, 徐广通, 龙腾. 基于定制内点法的多无人机协同轨迹规划[J/OL]. 自动化学报, 1–12. https://kns.cnki.net/kns8/Detail?sfield=fn&QueryID=0&CurRec=1&recid=&FileName=MOTO20201119000&DbName=CAPJLAST&DbCode=CAPJ&yx=Y&pr=&URLID=11.2109.TP.20201119.1423.001, 2020.
WANG Zhu, XU Guangtong, and LONG Teng. Customized interior-point method for cooperative trajectory planning of unmanned aerial vehicles[J/OL]. Acta Automatica Sinica, 1–12. https://kns.cnki.net/kns8/Detail?sfield=fn&QueryID=0&CurRec=1&recid=&FileName=MOTO20201119000&DbName=CAPJLAST&DbCode=CAPJ&yx=Y&pr=&URLID=11.2109.TP.20201119.1423.001, 2020.
|
[61] |
ZHANG Lin, ZHU Yian, and SHI Xianchen. A hierarchical decision-making method with a fuzzy ant colony algorithm for mission planning of multiple UAVs[J]. Information, 2020, 11(4): 226. doi: 10.3390/INFO11040226.
|
[62] |
LI Zhenyu, ZHU Hai, and LUO Yazhong. An escape strategy in orbital pursuit-evasion games with incomplete information[J]. Science China Technological Sciences, 2021, 64(3): 559–570. doi: 10.1007/s11431-020-1662-0.
|
[63] |
REN Zhi, ZHANG Dong, TANG Shuo, et al. Cooperative maneuver decision making for multi-UAV air combat based on incomplete information dynamic game[J]. Defence Technology, 2023, 27: 308–317. doi: 10.1016/j.dt.2022.10.008.
|
[64] |
ZHANG Jiandong, YANG Qiming, SHI Guoqing, et al. UAV cooperative air combat maneuver decision based on multi-agent reinforcement learning[J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1421–1438. doi: 10.23919/JSEE.2021.000121.
|
[65] |
LI Shaowei, JIA Yuhong, YANG Fan, et al. Collaborative decision-making method for multi-UAV based on multiagent reinforcement learning[J]. IEEE Access, 2022, 10: 91385–91396. doi: 10.1109/ACCESS.2022.3199070.
|
[66] |
WANG Zhenhua, GUO Yan, LI Ning, et al. Autonomous collaborative combat strategy of unmanned system group in continuous dynamic environment based on PD-MADDPG[J]. Computer Communications, 2023, 200: 182–204. doi: 10.1016/j.comcom.2023.01.009.
|
[67] |
YU Yueping, LIU Jichuan, and WEI Chen. Hawk and pigeon’s intelligence for UAV swarm dynamic combat game via competitive learning pigeon-inspired optimization[J]. Science China Technological Sciences, 2022, 65(5): 1072–1086. doi: 10.1007/s11431-021-1951-9.
|
[68] |
DENG Hanqiang, HUANG Jian, LIU Quan, et al. A distributed collaborative allocation method of reconnaissance and strike tasks for heterogeneous UAVs[J]. Drones, 2023, 7(2): 138. doi: 10.3390/drones7020138.
|
[69] |
MEMON S A and ULLAH I. Detection and tracking of the trajectories of dynamic UAVs in restricted and cluttered environment[J]. Expert Systems with Applications, 2021, 183: 115309. doi: 10.1016/j.eswa.2021.115309.
|
[70] |
CYBULSKI P and ZIELIŃSKI Z. UAV swarms behavior modeling using tracking bigraphical reactive systems[J]. Sensors, 2021, 21(2): 622. doi: 10.3390/s21020622.
|
[71] |
YU Yao, WANG Hongli, LIU Shumei, et al. Distributed multi-agent target tracking: A Nash-combined adaptive differential evolution method for UAV systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 8122–8133. doi: 10.1109/TVT.2021.3091575.
|
[72] |
ZHOU Wenhong, LI Jie, LIU Zhihong, et al. Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning[J]. Chinese Journal of Aeronautics, 2022, 35(7): 100–112. doi: 10.1016/j.cja.2021.09.008.
|
[73] |
ZHOU Wenhong, LIU Zhihong, LI Jie, et al. Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning[J]. Neurocomputing, 2021, 466: 285–297. doi: 10.1016/j.neucom.2021.09.044.
|
[74] |
HUA Xia, WANG Xinqing, RUI Ting, et al. Light-weight UAV object tracking network based on strategy gradient and attention mechanism[J]. Knowledge-Based Systems, 2021, 224: 107071. doi: 10.1016/j.knosys.2021.107071.
|
[75] |
张岱峰, 段海滨, 范彦铭. 仿狼群狩猎空间交互机制的无人机集群合围控制[J]. 中国科学:技术科学, 2022, 52(10): 1555–1570. doi: 10.1360/SST-2021-0042.
ZHANG Daifeng, DUAN Haibin, and FAN Yanming. UAV swarm containment control inspired by spatial interaction mechanism of wolf-pack foraging[J]. Scientia Sinica Technologica, 2022, 52(10): 1555–1570. doi: 10.1360/SST-2021-0042.
|
[76] |
MA Yingying, WANG Guoqiang, HU Xiaoxuan, et al. Cooperative occupancy decision making of multi-UAV in beyond-visual-range air combat: A game theory approach[J]. IEEE Access, 2020, 8: 11624–11634. doi: 10.1109/ACCESS.2019.2933022.
|
[77] |
MURAT OZBEK M and KOYUNCU E. Reinforcement learning based air combat maneuver generation[J]. arXiv: 2201.05528, 2022.
|
[78] |
LI Yue, HAN Wei, and WANG Yongqing. Deep reinforcement learning with application to air confrontation intelligent decision-making of manned/unmanned aerial vehicle cooperative system[J]. IEEE Access, 2020, 8: 67887–67898. doi: 10.1109/ACCESS.2020.2985576.
|
[79] |
过劲劲, 齐俊桐, 王明明, 等. 未知区域中四旋翼无人机集群协同搜索与围捕算法[J]. 北京航空航天大学学报, 2023, 49(8): 2001–2010. doi: 10.13700/j.bh.1001-5965.2021.0606.
GUO Jinjin, QI Juntong, WANG Mingming, et al. A cooperative search and encirclement algorithm for quadrotors in unknown areas[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2001–2010. doi: 10.13700/j.bh.1001-5965.2021.0606.
|
[80] |
牛轶峰, 沈林成, 李杰, 等. 无人-有人机协同控制关键问题[J]. 中国科学:信息科学, 2019, 49(5): 538–554. doi: 10.1360/N112019-00008.
NIU Yifeng, SHEN Lincheng, LI Jie, et al. Key scientific problems in cooperation control of unmanned-manned aircraft systems[J]. Scientia Sinica Informationis, 2019, 49(5): 538–554. doi: 10.1360/N112019-00008.
|
[81] |
KHAWAJA W, SEMKIN V, RATYAL N I, et al. Threats from and countermeasures for unmanned aerial and underwater vehicles[J]. Sensors, 2022, 22(10): 3896. doi: 10.3390/s22103896.
|
[82] |
YANG Xuekuan, WANG Wei, and HUANG Ping. Distributed optimal consensus with obstacle avoidance algorithm of mixed-order UAVs–USVs–UUVs systems[J]. ISA Transactions, 2020, 107: 270–286. doi: 10.1016/j.isatra.2020.07.028.
|
[83] |
XUE Kai and WU Tingyi. Distributed consensus of USVs under heterogeneous UAV-USV multi-agent systems cooperative control scheme[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1314. doi: 10.3390/jmse 9111314.
|
[84] |
WEI Wei, WANG Jingjing, FANG Zhengru, et al. 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4085–4090. doi: 10.1109/TVT.2022.3220856.
|
[85] |
XU Qingzheng, WANG Na, WANG Lei, et al. Multi-task optimization and multi-task evolutionary computation in the past five years: A brief review[J]. Mathematics, 2021, 9(8): 864. doi: 10.3390/math9080864.
|
[86] |
OSABA E, DEL SER J, MARTINEZ A D, et al. Evolutionary multitask optimization: A methodological overview, challenges, and future research directions[J]. Cognitive Computation, 2022, 14(3): 927–954. doi: 10.1007/s12559-022-10012-8.
|
[87] |
WONG Annie, BÄCK T, KONONOVA A V, et al. Deep multiagent reinforcement learning: Challenges and directions[J]. Artificial Intelligence Review, 2023, 56(6): 5023–5056. doi: 10.1007/s10462-022-10299-x.
|
[88] |
OROOJLOOY A and HAJINEZHAD D. A review of cooperative multi-agent deep reinforcement learning[J]. Applied Intelligence, 2023, 53(11): 13677–13722. doi: 10.1007/s10489-022-04105-y.
|
[89] |
CANESE L, CARDARILLI G C, DI NUNZIO L, et al. Multi-agent reinforcement learning: A review of challenges and applications[J]. Applied Sciences, 2021, 11(11): 4948. doi: 10.3390/app11114948.
|