Citation: | LI Wei, CHEN Yi, CHEN Tao, NAN Longmei, DU Yiran. A Research and Design of Reconfigurable CNN Co-Processor for Edge Computing[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1499-1512. doi: 10.11999/JEIT230509 |
[1] |
FIROUZI F, FARAHANI B, and MARINŠEK A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT)[J]. Information Systems, 2022, 107: 101840. doi: 10.1016/j.is.2021.101840.
|
[2] |
ALAM F, ALMAGHTHAWI A, KATIB I, et al. IResponse: An AI and IoT-enabled framework for autonomous COVID-19 pandemic management[J]. Sustainability, 2021, 13(7): 3797. doi: 10.3390/su13073797.
|
[3] |
CHAUDHARY V, KAUSHIK A, FURUKAWA H, et al. Review-Towards 5th generation AI and IoT driven sustainable intelligent sensors based on 2D MXenes and borophene[J]. ECS Sensors Plus, 2022, 1(1): 013601. doi: 10.1149/2754-2726/ac5ac6.
|
[4] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[5] |
LU Wenyan, YAN Guihai, LI Jiajun, et al. FlexFlow: A flexible dataflow accelerator architecture for convolutional neural networks[C]. 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, USA, 2017: 553–564. doi: 10.1109/HPCA.2017.29.
|
[6] |
PARK J S, PARK C, KWON S, et al. A multi-mode 8k-MAC HW-utilization-aware neural processing unit with a unified multi-precision Datapath in 4-nm flagship mobile SoC[J]. IEEE Journal of Solid-State Circuits, 2023, 58(1): 189–202. doi: 10.1109/JSSC.2022.3205713.
|
[7] |
GOKHALE V, JIN J, DUNDAR A, et al. A 240 G-ops/s mobile coprocessor for deep neural networks[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, USA, 2014: 682–687. doi: 10.1109/CVPRW.2014.106.
|
[8] |
DU Zidong, FASTHUBER R, CHEN Tianshi, et al. ShiDianNao: Shifting vision processing closer to the sensor[C]. 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), Portland, USA, 2015: 92–104. doi: 10.1145/2749469.2750389.
|
[9] |
ZHANG Chen, LI Peng, SUN Guangyu, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]. The 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, 2015: 161–170. doi: 10.1145/2684746.2689060.
|
[10] |
CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127–138. doi: 10.1109/JSSC.2016.2616357.
|
[11] |
HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. https://arxiv.org/abs/1704.04861, 2017.
|
[12] |
DING Caiwen, WANG Shuo, LIU Ning, et al. REQ-YOLO: A resource-aware, efficient quantization framework for object detection on FPGAs[C]. The 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, USA, 2019: 33–42. doi: 10.1145/3289602.3293904.
|
[13] |
LE M Q, NGUYEN Q T, DAO V H, et al. CNN quantization for anatomical landmarks classification from upper gastrointestinal endoscopic images on Edge devices[C]. 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE), Nha Trang, Vietnam, 2022: 389–394. doi: 10.1109/ICCE55644.2022.9852098.
|
[14] |
KWAK J, KIM K, LEE S S, et al. Quantization aware training with order strategy for CNN[C]. 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Republic of Korea, 2022: 1–3. doi: 10.1109/ICCE-Asia57006.2022.9954693.
|
[15] |
JACOB B, KLIGYS S, CHEN Bo, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2704–2713. doi: 10.1109/CVPR.2018.00286.
|
[16] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[17] |
JO J, CHA S, RHO D, et al. DSIP: A scalable inference accelerator for convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 605–618. doi: 10.1109/JSSC.2017.2764045.
|
[18] |
ARDAKANI A, CONDO C, and GROSS W J. Fast and efficient convolutional accelerator for edge computing[J]. IEEE Transactions on Computers, 2020, 69(1): 138–152. doi: 10.1109/TC.2019.2941875.
|
[19] |
AHMADI M, VAKILI S, and LANGLOIS J M P. CARLA: A convolution accelerator with a reconfigurable and low-energy architecture[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(8): 3184–3196. doi: 10.1109/TCSI.2021.3066967.
|
[20] |
LU Yi, WU Yilin and HUANG J D. A coarse-grained dual-convolver based CNN accelerator with high computing resource utilization[C]. 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 2020: 198–202. doi: 10.1109/AICAS48895.2020.9073835.
|
[21] |
HUANG Boming, HUAN Yuxiang, CHU Haoming, et al. IECA: An in-execution configuration CNN accelerator with 30.55 GOPS/mm² area efficiency[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(11): 4672–4685. doi: 10.1109/TCSI.2021.3108762.
|
[22] |
CHEN Y H, YANG T J, EMER J, et al. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9(2): 292–308. doi: 10.1109/JETCAS.2019.2910232.
|
[23] |
HOSSAIN M D S and SAVIDIS I. Energy efficient computing with heterogeneous DNN accelerators[C]. 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington, USA, 2021: 1–4. doi: 10.1109/AICAS51828.2021.9458474.
|