Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
WANG Feng, LI Jianqiang, ZHANG Guodong, ZHANG Qi, YANG Dongkai. Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464
Citation: WANG Feng, LI Jianqiang, ZHANG Guodong, ZHANG Qi, YANG Dongkai. Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1418-1427. doi: 10.11999/JEIT230464

Maximum Likelihood Estimation of Ocean Wind Vector Using Subsatellite-Observation Spaceborne Global Navigation Satellite System-Reflectometry

doi: 10.11999/JEIT230464
Funds:  China National Postdoctoral Program for Innovative Talents (BX20200039), Shanghai Industrial Collaborative Innovation Project (2021-cyxt2-kj05)
  • Received Date: 2023-05-22
  • Rev Recd Date: 2023-12-15
  • Available Online: 2023-12-23
  • Publish Date: 2024-04-24
  • It is difficult to retrieve the ocean wind direction using the specular reflection signal owing to its insensitivity to the sea surface wind direction. The sensitivity of the scattered Global Navigation Satellite System-Reflectometry (GNSS-R) signal from the non-specular geometry to wind direction is first investigated in this paper. The sub-satellite non-specular observation mode is proposed, and the observable quanitity sensitive to wind direction in this mode is defined. Based on this mode, the wind vector retrieval algorithm using spaceborne GNSS-R based on the Maximum Likelihood Estimation (MLE) is presented, in which the sub-satellite non-specular scattering signals from two and more navigation satellites are used to retrieve ocean wind vector. A simulator is developed to demonstrate and test the proposed algorithm. The results show that due to the ambiguity of the observation geometry and the symmetry of the ocean spectrum, there are four uncertain solutions in the retrieved wind directions. The ambiguity of the measurement geometry can be eliminated by using the multi-satellite observation, and only two possible solutions of wind directions still are remained. When the scattered signals from three satellites are used, and the Signal-to-Noise Ratio (SNR) is over 11 dB, the Root Mean Square Error (RMSE) of the retrieved wind speed and direction are less 2 m/s and 15° with a wind speed rang of 2~25 m/s.
  • loading
  • [1]
    侯一筠, 尹宝树, 管长龙, 等. 我国海洋动力灾害研究进展与展望[J]. 海洋与湖沼, 2020, 51(4): 759–767. doi: 10.11693/hyhz20200100029.

    HOU Yijun, YIN Baoshu, GUAN Changlong, et al. Progress and prospect in research on marine dynamic disasters in China[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 759–767. doi: 10.11693/hyhz20200100029.
    [2]
    自然资源部, 海洋预警监测司. 2020年中国海洋灾害公报[R]. 2021.

    Ministry of Natural Resources and Marine Early Warning and Monitoring Department. Bulletin of China marine disaster 2020[R]. 2021.
    [3]
    自然资源部, 海洋预警监测司. 2019年中国海洋灾害公报[R]. 2020.

    Ministry of Natural Resources and Marine Early Warning and Monitoring Department. Bulletin of China marine disaster 2019[R]. 2020.
    [4]
    高歌, 黄大鹏, 赵珊珊. 基于信息扩散方法的中国台风灾害年月尺度风险评估[J]. 气象, 2019, 45(11): 1600–1610. doi: 10.7519/j.issn.1000-0526.2019.11.010.

    GAO Ge, HUANG Dapeng, and ZHAO Shanshan. Annual and monthly risk assessment of typhoon disasters in China based on the information diffusion method[J]. Meteorological Monthly, 2019, 45(11): 1600–1610. doi: 10.7519/j.issn.1000-0526.2019.11.010.
    [5]
    张新蕾. 基于多源遥感数据的北太平洋海面风场研究[D]. [硕士论文], 辽宁师范大学, 2019.

    ZHANG Xinlei. Research on the sea surface wind field of the North Pacific Ocean based on multi-source remote sensing data[D]. [Master dissertation], Liaoning Normal University, 2019.
    [6]
    林明森, 张有广. 我国海洋动力环境卫星应用现状及发展展望[J]. 卫星应用, 2018(5): 19–23. doi: 10.3969/j.issn.1674-9030.2018.05.006.

    LIN Mingsen and ZHANG Youguang. Current status and development prospects of marine dynamic environment satellite application in China[J]. Satellite Application, 2018(5): 19–23. doi: 10.3969/j.issn.1674-9030.2018.05.006.
    [7]
    蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5): 1185–1198. doi: 10.11834/jrs.20166153.

    JIANG Xingwei, LIN Mingsen, and ZHANG Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5): 1185–1198. doi: 10.11834/jrs.20166153.
    [8]
    HALL C D and CORDEY R A. Multistatic scatterometry[C]. International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century', Edinburgh, UK, 1988: 561–562. doi: 10.1109/IGARSS.1988.570200.
    [9]
    GUO Wenfei, DU Hao, CHEONG J W, et al. GNSS-R wind speed retrieval of sea surface based on particle swarm optimization algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4202414. doi: 10.1109/TGRS.2021.3082916.
    [10]
    QIN Lingyu and LI Ying. Wind speed retrieval method for shipborne GNSS-R[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1000205. doi: 10.1109/LGRS.2020.3021506.
    [11]
    RAJABI M, HOSEINI M, NAHAVANDCHI H, et al. Polarimetric GNSS-R sea level monitoring using I/Q interference patterns at different antenna configurations and carrier frequencies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5801613. doi: 10.1109/TGRS.2021.3123146.
    [12]
    ZHU Yongchao, TAO Tingye, LI Jiangyang, et al. Spaceborne GNSS-R for sea ice classification using machine learning classifiers[J]. Remote Sensing, 2021, 13(22): 4577. doi: 10.3390/rs13224577.
    [13]
    ZHU Y, TAO T, ZOU J, et al. Spaceborne GNSS reflectometry for retrieving sea ice concentration using TDS-1 data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 612–616. doi: 10.1109/LGRS.2020.2982959.
    [14]
    WANG Nazi, GAO Fan. KONG Yahui, et al. Soil moisture estimation based on GNSS-R using L5 signals from a Quasi-Zenith satellite system[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2505005. doi: 10.1109/LGRS.2022.3176463.
    [15]
    RUF C S, GLEASON S, JELENAK Z, et al. The CYGNSS nanosatellite constellation hurricane mission[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 214–216. doi: 10.1109/IGARSS.2012.6351600.
    [16]
    GUO Zhizhou, LIU Baojian, WAN Wei, et al. Soil moisture retrieval using BuFeng-1 A/B based on land surface clustering algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4680–4689. doi: 10.1109/JSTARS.2022.3179325.
    [17]
    YANG Guanglin, BAI Weihua, WANG Jinsong, et al. FY3E GNOS II GNSS reflectometry: Mission review and first results[J]. Remote Sensing, 2022, 14(4): 988. doi: 10.3390/rs14040988.
    [18]
    ZUFFADA C, ELFOUHAILY T, and LOWE S. Sensitivity analysis of wind vector measurements from ocean reflected GPS signals[J]. Remote Sensing of Environment, 2003, 88(3): 341–350. doi: 10.1016/S0034-4257(03)00175-5.
    [19]
    GARRISON J L. Anisotropy in reflected GPS measurements of ocean winds[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 2003: 4480–4482. doi: 10.1109/IGARSS.2003.1295553.
    [20]
    VALENCIA E, ZAVOROTNY V U, AKOS D M, et al. Using DDM asymmetry metrics for wind direction retrieval from GPS ocean-scattered signals in airborne experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3924–3936. doi: 10.1109/TGRS.2013.2278151.
    [21]
    GUAN Dongliang, PARK H, CAMPS A, et al. Wind direction signatures in GNSS-R observables from space[J]. Remote Sensing, 2018, 10(2): 198. doi: 10.3390/rs10020198.
    [22]
    WANG Feng, YANG Dongkai, and YANG Lei. Feasibility of wind direction observation using low-altitude global navigation satellite system-reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 5063–5075. doi: 10.1109/JSTARS.2018.2877388.
    [23]
    ZHANG Guodong, YANG Dongkai, YU Yongqing, et al. Wind direction retrieval using spaceborne GNSS-R in nonspecular geometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 649–658. doi: 10.1109/JSTARS.2020.2970106.
    [24]
    KING L S, UNWIN M, RAWLINSON J, et al. Processing of raw GNSS reflectometry data from TDS-1 in a backscattering configuration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2916–2924. doi: 10.1109/JSTARS.2020.2997199.
    [25]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill Education, 2014: 55.
    [26]
    ALONSO-ARROYO A, QUEROL J, LOPEZ-MARTINEZ C, et al. SNR and standard deviation of cGNSS-R and iGNSS-R scatterometric measurements[J]. Sensors, 2017, 17(1): 183. doi: 10.3390/s17010183.
    [27]
    解学通, 方裕, 陈晓翔, 等. 基于最大似然估计的海面风场反演算法研究[J]. 地理与地理信息科学, 2005, 21(1): 30–33. doi: 10.3969/j.issn.1672-0504.2005.01.009.

    XIE Xuetong, FANG Yu. CHEN Xiaoxiang, et al. Research on Numerical wind vector retrieval algorithm based on maximum likelihood estimation[J]. Geography and Geo-Information Science, 2005, 21(1): 30–33. doi: 10.3969/j.issn.1672-0504.2005.01.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (248) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return