Citation: | LI Zhihua, YU Zili. A Multi-user Computation Offloading Optimization Model and Algorithm Based on Deep Reinforcement Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1321-1332. doi: 10.11999/JEIT230445 |
[1] |
ZHOU Zhi, CHEN Xu, LI En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. doi: 10.1109/JPROC.2019.2918951.
|
[2] |
GERARDS M E T, HURINK J L, and KUPER J. On the interplay between global DVFS and scheduling tasks with precedence constraints[J]. IEEE Transactions on Computers, 2015, 64(6): 1742–1754. doi: 10.1109/TC.2014.2345410.
|
[3] |
SADATDIYNOV K, CUI Laizhong, ZHANG Lei, et al. A review of optimization methods for computation offloading in edge computing networks[J]. Digital Communications and Networks, 2023, 9(2): 450–461. doi: 10.1016/j.dcan.2022.03.003.
|
[4] |
SUN Jiannan, GU Qing, ZHENG Tao, et al. Joint optimization of computation offloading and task scheduling in vehicular edge computing networks[J]. IEEE Access, 2020, 8: 10466–10477. doi: 10.1109/ACCESS.2020.2965620.
|
[5] |
LIU Hui, NIU Zhaocheng, DU Junzhao, et al. Genetic algorithm for delay efficient computation offloading in dispersed computing[J]. Ad Hoc Networks, 2023, 142: 103109. doi: 10.1016/j.adhoc.2023.103109.
|
[6] |
ALAMEDDINE H A, SHARAFEDDINE S, SEBBAH S, et al. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(3): 668–682. doi: 10.1109/JSAC.2019.2894306.
|
[7] |
BI Suzhi, HUANG Liang, and ZHANG Y J A. Joint optimization of service caching placement and computation offloading in mobile edge computing systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4947–4963. doi: 10.1109/TWC.2020.2988386.
|
[8] |
YI Changyan, CAI Jun, and SU Zhou. A multi-user mobile computation offloading and transmission scheduling mechanism for delay-sensitive applications[J]. IEEE Transactions on Mobile Computing, 2020, 19(1): 29–43. doi: 10.1109/TMC.2019.2891736.
|
[9] |
MITSIS G, TSIROPOULOU E E, and PAPAVASSILIOU S. Price and risk awareness for data offloading decision-making in edge computing systems[J]. IEEE Systems Journal, 2022, 16(4): 6546–6557. doi: 10.1109/JSYST.2022.3188997.
|
[10] |
ZHANG Kaiyuan, GUI Xiaolin, REN Dewang, et al. Optimal pricing-based computation offloading and resource allocation for blockchain-enabled beyond 5G networks[J]. Computer Networks, 2022, 203: 108674. doi: 10.1016/j.comnet.2021.108674.
|
[11] |
TONG Zhao, DENG Xin, MEI Jing, et al. Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing[J]. Journal of Systems Architecture, 2023, 137: 102847. doi: 10.1016/j.sysarc.2023.102847.
|
[12] |
张祥俊, 伍卫国, 张弛, 等. 面向移动边缘计算网络的高能效计算卸载算法[J]. 软件学报, 2023, 34(2): 849–867. doi: 10.13328/j.cnki.jos.006417.
ZHANG Xiangjun, WU Weiguo, ZHANG Chi, et al. Energy-efficient computing offloading algorithm for mobile edge computing network[J]. Journal of Software, 2023, 34(2): 849–867. doi: 10.13328/j.cnki.jos.006417.
|
[13] |
YAO Liang, XU Xiaolong, BILAL M, et al. Dynamic edge computation offloading for internet of vehicles with deep reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12991–12999. doi: 10.1109/TITS.2022.3178759.
|
[14] |
SADIKI A, BENTAHAR J, DSSOULI R, et al. Deep reinforcement learning for the computation offloading in MIMO-based Edge Computing[J]. Ad Hoc Networks, 2023, 141: 103080. doi: 10.1016/j.adhoc.2022.103080.
|
[15] |
TANG Ming and WONG V W S. Deep reinforcement learning for task offloading in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 1985–1997. doi: 10.1109/TMC.2020.3036871.
|
[16] |
CHENG Nan, LYU Feng, QUAN Wei, et al. Space/aerial-assisted computing offloading for IoT applications: A learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117–1129. doi: 10.1109/JSAC.2019.2906789.
|
[17] |
ZHOU Huan, JIANG Kai, LIU Xuxun, et al. Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2022, 9(2): 1517–1530. doi: 10.1109/JIOT.2021.3091142.
|
[18] |
WANG Yunpeng, FANG Weiwei, DING Yi, et al. Computation offloading optimization for UAV-assisted mobile edge computing: A deep deterministic policy gradient approach[J]. Wireless Networks, 2021, 27(4): 2991–3006. doi: 10.1007/s11276-021-02632-z.
|
[19] |
ALE L, ZHANG Ning, FANG Xiaojie, et al. Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3): 881–892. doi: 10.1109/TCCN.2021.3066619.
|
[20] |
DAI Yueyue, XU Du, ZHANG Ke, et al. Deep reinforcement learning for edge computing and resource allocation in 5G beyond[C]. The IEEE 19th International Conference on Communication Technology, Xian, China, 2019: 866–870. doi: 10.1109/ICCT46805.2019.8947146.
|
[21] |
3GPP. TR 36.814 v9.0. 0. Further advancements for E-UTRA physical layer aspects[S]. 2010.
|
[22] |
WANG Yanting, SHENG Min, WANG Xijun, et al. Mobile-edge computing: Partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10): 4268–4282. doi: 10.1109/TCOMM.2016.2599530.
|
[23] |
ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169.
|
[24] |
ZHANG Lianhong, ZHOU Wenqi, XIA Junjuan, et al. DQN-based mobile edge computing for smart Internet of vehicle[J]. EURASIP Journal on Advances in Signal Processing, 2022, 2022(1): 45. doi: 10.1186/s13634-022-00876-1.
|
[25] |
WANG Jin, HU Jia, MIN Geyong, et al. Dependent task offloading for edge computing based on deep reinforcement learning[J]. IEEE Transactions on Computers, 2022, 71(10): 2449–2461. doi: 10.1109/TC.2021.3131040.
|
[26] |
SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: A Bradford Book, 2018: 47–50.
|
[27] |
LIU Y C and HUANG Chiyu. DDPG-based adaptive robust tracking control for aerial manipulators with decoupling approach[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8258–8271. doi: 10.1109/TCYB.2021.3049555.
|
[28] |
HU Shihong and LI Guanghui. Dynamic request scheduling optimization in mobile edge computing for IoT applications[J]. IEEE Internet of Things Journal, 2020, 7(2): 1426–1437. doi: 10.1109/JIOT.2019.2955311.
|