Advanced Search
Volume 45 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHU Hang, HOU Linsheng, KANG Guoqin, ZOU Xiaojun, SONG Wei, TAN Ming, ZHANG Shuning. A Fast Fitting Method for Combined Pulse Power Spectrum of Carrier-free Ultra Wide-band Fuze[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3927-3934. doi: 10.11999/JEIT230415
Citation: ZHU Hang, HOU Linsheng, KANG Guoqin, ZOU Xiaojun, SONG Wei, TAN Ming, ZHANG Shuning. A Fast Fitting Method for Combined Pulse Power Spectrum of Carrier-free Ultra Wide-band Fuze[J]. Journal of Electronics & Information Technology, 2023, 45(11): 3927-3934. doi: 10.11999/JEIT230415

A Fast Fitting Method for Combined Pulse Power Spectrum of Carrier-free Ultra Wide-band Fuze

doi: 10.11999/JEIT230415
Funds:  The National Natural Science Foudation of China (62201579, 62201580)
  • Received Date: 2023-05-15
  • Rev Recd Date: 2023-07-10
  • Available Online: 2023-07-13
  • Publish Date: 2023-11-28
  • A fast power spectrum fitting method based on Orthogonal Basis Searching (OBS) is proposed to meet the requirements of Gaussian pulse combination waveform design for Carrier free Ultra Wide-Band (UWB) fuze. Multiple candidate Gaussian pulse functions are constructed according to the value range of the pulse forming factor, and on the basis of power spectrum design by maximizing mutual information, power spectrum fitting is carried out in a cyclic iteration method. In each iteration, Schmidt Orthogonalization is performed on the candidate Gaussian pulse functions, and the best one matches the residual amplitude spectrum is quickly found through the inner product calculation. Finally, the weighting coefficient is determined according to the matrix relationship between the selected Gaussian pulse functions and their Orthogonalization functions, so as to obtain the waveform combined with multi-pulse, which makes the fitted power spectrum and the designed one achieve good similarity. The effectiveness of the proposed method and its efficiency compared to the particle swarm optimization algorithm have been verified through simulation.
  • loading
  • [1]
    陈龙, 张菁, 张昊立, 等. 具有误差补偿的信号干扰下超宽带室内定位[J]. 导航定位学报, 2022, 10(6): 59–67. doi: 10.3969/j.issn.2095-4999.2022.06.008

    CHEN Long, ZHANG Jing, ZHANG Haoli, et al. UWB indoor positioning under signal interference based on error compensation[J]. Journal of Navigation and Positioning, 2022, 10(6): 59–67. doi: 10.3969/j.issn.2095-4999.2022.06.008
    [2]
    闫岩, 崔占忠. 超宽带无线电引信抗干扰性能研究[J]. 兵工学报, 2010, 31(1): 13–17. doi: 10.3969/j.issn.1000-1093.2010.01.003

    YAN Yan and CUI Zhanzhong. Anti-jamming performance of ultra wideband radio fuze[J]. Acta Armamentarii, 2010, 31(1): 13–17. doi: 10.3969/j.issn.1000-1093.2010.01.003
    [3]
    董二娃, 郝新红, 闫晓鹏, 等. 扫频式干扰对超宽带无线电引信干扰机理[J]. 兵工学报, 2023, 44(4): 1006–1014. doi: 10.12382/bgxb.2022.0088

    DONG Erwa, HAO Xinhong, YAN Xiaopeng, et al. Research on interference mechanism of swept-frequency jamming to UWB radio fuze[J]. Acta Armamentarii, 2023, 44(4): 1006–1014. doi: 10.12382/bgxb.2022.0088
    [4]
    沈磊, 黄忠华. 超宽带无线电引信回波信号建模与仿真[J]. 兵工学报, 2015, 36(5): 795–800. doi: 10.3969/j.issn.1000-1093.2015.05.005

    SHEN Lei and HUANG Zhonghua. Modeling and simulation of echo signal of ultra-wideband radio fuze[J]. Acta Armamentarii, 2015, 36(5): 795–800. doi: 10.3969/j.issn.1000-1093.2015.05.005
    [5]
    李晓雄, 张淑宁, 赵惠昌, 等. 基于1DC-CGAN和小波能量特征的引信小样本地形目标识别[J]. 兵工学报, 2022, 43(10): 2545–2553. doi: 10.12382/bgxb.2021.0505

    LI Xiaoxiong, ZHANG Shuning, ZHAO Huichang, et al. Identification of fuzzy small-sample terrain targets based on 1DC-CGAN and wavelet energy features[J]. Acta Armamentarii, 2022, 43(10): 2545–2553. doi: 10.12382/bgxb.2021.0505
    [6]
    MILOS A, MOLNAR G, and VUCIC M. Spectral-efficient UWB pulse shapers generating Gaussian and modified Hermitian monocycles[C]. The 40th International Convention on Information and Communication Technology, Electronics and Microelectronics, Opatija, Croatia, 2017: 113–118.
    [7]
    吴宣利, 沙学军, 张乃通. 脉冲超宽带系统中波形设计方法的分析与比较[J]. 哈尔滨工业大学学报, 2009, 41(1): 1–6. doi: 10.3321/j.issn:0367-6234.2009.01.001

    WU Xuanli, SHA Xuejun, and ZHANG Naitong. Analysis and comparison of pulse waveform design methods in impulse radio ultra-wideband systems[J]. Journal of Harbin Institute of Technology, 2009, 41(1): 1–6. doi: 10.3321/j.issn:0367-6234.2009.01.001
    [8]
    SOLIMAN S S, SHEHATA M, and MOSTAFA H. Generation of low-complexity power-efficient IR-UWB waveforms[J]. Optik, 2022, 251: 168245. doi: 10.1016/j.ijleo.2021.168245
    [9]
    NIU Jiangli, WU Qiong, and LAI Xiaoping. Design of multiple orthogonal pulses for UWB radios using an iterative convex constrained l1 minimization method[C]. The 29th Chinese Control and Decision Conference, Chongqing, China, 2017: 5222–5227.
    [10]
    SUN Xuebin, LI Zhanmin, ZHAO Chenglin, et al. Cognitive UWB pulse waveform design based on particle swarm optimization[J]. Ad Hoc&Sensor Wireless Networks, 2012, 16(1/3): 215–227.
    [11]
    陈小波, 陈红, 贾占彪, 等. 基于粒子群算法的超宽带脉冲波形设计[J]. 电子信息对抗技术, 2011, 26(4): 77–80. doi: 10.3969/j.issn.1674-2230.2011.04.019

    CHEN Xiaobo, CHEN Hong, JIA Zhanbiao, et al. Waveform design for UWB communication based on particle swarm optimization[J]. Electronic Information Warfare Technology, 2011, 26(4): 77–80. doi: 10.3969/j.issn.1674-2230.2011.04.019
    [12]
    HAYKIN S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30–40. doi: 10.1109/MSP.2006.1593335
    [13]
    曹亚丽, 李梅梅, 屈诗涵, 等. 联合准则下的认知雷达波形设计[J]. 系统工程与电子技术, 2022, 44(11): 3364–3370. doi: 10.12305/j.issn.1001-506X.2022.11.10

    CAO Yali, LI Meimei, QU Shihan, et al. Waveform design of cognitive radar based on joint criteria[J]. Systems Engineering and Electronics, 2022, 44(11): 3364–3370. doi: 10.12305/j.issn.1001-506X.2022.11.10
    [14]
    STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652
    [15]
    赵宜楠, 张涛, 李风从, 等. 基于交替投影的MIMO雷达最优波形设计[J]. 电子与信息学报, 2014, 36(6): 1368–1373. doi: 10.3724/SP.J.1146.2013.01198

    ZHAO Yinan, ZHANG Tao, LI Fengcong, et al. Optimal waveform design for MIMO radar via alternating projection[J]. Journal of Electronics&Information Technology, 2014, 36(6): 1368–1373. doi: 10.3724/SP.J.1146.2013.01198
    [16]
    ROMERO R A, BAE J, and GOODMAN N A. Theory and application of SNR and mutual information matched illumination waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 912–927. doi: 10.1109/TAES.2011.5751234
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (233) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return