Citation: | YANG Ruixin, ZHANG Guanjie, MA Shuai, CHAI Jinjin, XU Gang, LI Shiyin. Robust Power Allocation for Multi-LED Integrated Visible Light Positioning and Communication[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1186-1195. doi: 10.11999/JEIT230406 |
[1] |
IMT-2030(6G)推进组. 6G典型场景和关键能力[R]. 2022.
IMT-2030(6G) Promotion Group. 6G typical scenarios and key capabilities[R]. 2022.
|
[2] |
SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
|
[3] |
全球6G技术大会. 通感一体化系统架构与关键技术[R]. 2023.
Global 6G Conference. System arrchitecture and key technologies of integrated sensing and communication[R]. 2023.
|
[4] |
MATHEUS L E M, VIEIRA A B, VIEIRA L F M, et al. Visible light communication: Concepts, applications and challenges[J]. IEEE Communications Surveys &Tutorials, 2019, 21(4): 3204–3237. doi: 10.1109/COMST.2019.2913348.
|
[5] |
MEMEDI A and DRESSLER F. Vehicular visible light communications: A survey[J]. IEEE Communications Surveys &Tutorials, 2021, 23(1): 161–181. doi: 10.1109/COMST.2020.3034224.
|
[6] |
KOMINE T and NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100–107. doi: 10.1109/TCE.2004.1277847.
|
[7] |
LI Doupeng, GONG Chen, and XU Zhengyuan. A RSSI-based indoor visible light positioning approach[C]. 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016,
|
[8] |
STEENDAM H, WANG T Q, and ARMSTRONG J. Theoretical lower bound for indoor visible light positioning using received signal strength measurements and an aperture-based receiver[J]. Journal of Lightwave Technology, 2017, 35(2): 309–319. doi: 10.1109/JLT.2016.2645603.
|
[9] |
LIN Bangjiang, TANG Xuan, GHASSEMLOOY Z, et al. Experimental demonstration of an indoor VLC positioning system based on OFDMA[J]. IEEE Photonics Journal, 2017, 9(2): 7902209. doi: 10.1109/JPHOT.2017.2672038.
|
[10] |
XU Yitong, WANG Zixiong, LIU Peixi, et al. Accuracy analysis and improvement of visible light positioning based on VLC system using orthogonal frequency division multiple access[J]. Optics Express, 2017, 25(26): 32618–32630. doi: 10.1364/OE.25.032618.
|
[11] |
YANG Helin, CHEN Chen, ZHONG Wende, et al. Demonstration of a quasi-gapless integrated visible light communication and positioning system[J]. IEEE Photonics Technology Letters, 2018, 30(23): 2001–2004. doi: 10.1109/LPT.2018.2874311.
|
[12] |
CHEN Danyang, FAN Kai, WANG Jianping, et al. Integrated visible light communication and positioning CDMA system employing modified ZCZ and Walsh code[J]. Optics Express, 2022, 30(22): 40455–40469. doi: 10.1364/OE.474687.
|
[13] |
SHI Lina, BÉCHADERGUE B, CHASSAGNE L, et al. Joint visible light sensing and communication using m-CAP modulation[J]. IEEE Transactions on Broadcasting, 2023, 69(1): 276–288. doi: 10.1109/TBC.2022.3201649.
|
[14] |
JIN Jianli, LU Huimin, WANG Jianping, et al. Adaptive feedback threshold based demodulation for mobile visible light communication and positioning integrated system[J]. Optics Express, 2022, 30(8): 13331–13344. doi: 10.1364/OE.456076.
|
[15] |
YANG Helin, ZHONG Wende, CHEN Chen, et al. QoS-driven optimized design-based integrated visible light communication and positioning for indoor IoT networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 269–283. doi: 10.1109/JIOT.2019.2951396.
|
[16] |
YANG Helin, ZHONG Wende, CHEN Chen, et al. Coordinated resource allocation-based integrated visible light communication and positioning systems for indoor IoT[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4671–4684. doi: 10.1109/TWC.2020.2986109.
|
[17] |
YANG Helin, DU Pengfei, ZHONG Wende, et al. Reinforcement learning-based intelligent resource allocation for integrated VLCP systems[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1204–1207. doi: 10.1109/LWC.2019.2911682.
|
[18] |
马帅, 李兵, 盛海鸿, 等. 基于深度强化学习的可见光定位通信一体化功率分配研究[J]. 通信学报, 2022, 43(8): 121–130. doi: 10.11959/j.issn.1000-436x.2022163.
MA Shuai, LI Bing, SHENG Haihong, et al. Research on power allocation of integrated VLPC based on deep reinforcement learning[J]. Journal on Communications, 2022, 43(8): 121–130. doi: 10.11959/j.issn.1000-436x.2022163.
|
[19] |
MA Shuai, YANG Ruixin, LI Bing, et al. Optimal power allocation for integrated visible light positioning and communication system with a single LED-lamp[J]. IEEE Transactions on Communications, 2022, 70(10): 6734–6747. doi: 10.1109/TCOMM.2022.3204659.
|
[20] |
KAHN J M and BARRY J R. Wireless infrared communications[J]. Proceedings of the IEEE, 1997, 85(2): 265–298. doi: 10.1109/5.554222.
|
[21] |
FATH T and HAAS H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments[J]. IEEE Transactions on Communications, 2013, 61(2): 733–742. doi: 10.1109/TCOMM.2012.120512.110578.
|
[22] |
WANG T Q, SEKERCIOGLU Y A, and ARMSTRONG J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications[J]. Journal of Lightwave Technology, 2013, 31(11): 1744–1754. doi: 10.1109/JLT.2013.2257685.
|
[23] |
马帅, 秦莉莉, 李兵, 等. 可见光与射频聚合系统稳健波束成形设计[J]. 电子与信息学报, 2022, 44(8): 2659–2665. doi: 10.11999/JEIT220142.
MA Shuai, QIN Lili, LI Bing, et al. Robust beamforming design for aggregated visible light communication and radio frequency systems[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2659–2665. doi: 10.11999/JEIT220142.
|
[24] |
PLETS D, ERYILDIRIM A, BASTIAENS S, et al. A performance comparison of different cost functions for RSS-based visible light positioning under the presence of reflections[C]. The 4th ACM Workshop on Visible Light Communication Systems, Snowbird, USA, 2017.
|
[25] |
CENGIZ K. Comprehensive analysis on least-squares lateration for indoor positioning systems[J]. IEEE Internet of Things Journal, 2021, 8(4): 2842–2856. doi: 10.1109/JIOT.2020.3020888.
|
[26] |
KAY S M, 罗鹏飞, 张文明, 刘忠, 等译. 统计信号处理基础——估计与检测理论(卷Ⅰ、卷Ⅱ合集)[M]. 北京: 电子工业出版社, 2014: 22–27.
KAY S M, LUO Pengfei, ZHANG Wenming, LIU Zhong, et al. translation. Fundamentals of Statistical Signal Processing, Volume Ⅰ: Estimation Theory, Volume Ⅱ: Detection Theory[M]. Beijing: Publishing House of Electronics Industry, 2014: 22–27.
|
[27] |
WANG Tao, LEUS G, and HUANG Li. Ranging energy optimization for robust sensor positioning based on semidefinite programming[J]. IEEE Transactions on Signal Processing, 2009, 57(12): 4777–4787. doi: 10.1109/TSP.2009.2028211.
|
[28] |
LOTTICI V, D'ANDREA A, and MENGALI U. Channel estimation for ultra-wideband communications[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(9): 1638–1645. doi: 10.1109/JSAC.2002.805053.
|
[29] |
KESKIN M F, SEZER A D, and GEZICI S. Optimal and robust power allocation for visible light positioning systems under illumination constraints[J]. IEEE Transactions on Communications, 2019, 67(1): 527–542. doi: 10.1109/TCOMM.2018.2866849.
|
[30] |
ZYMLER S, KUHN D, and RUSTEM B. Distributionally robust joint chance constraints with second-order moment information[J]. Mathematical Programming, 2013, 137(1/2): 167–198. doi: 10.1007/s10107-011-0494-7.
|
[31] |
ZHANG Yu, LI Bin, GAO Feifei, et al. A robust design for ultra reliable ambient backscatter communication systems[J]. IEEE Internet of Things Journal, 2019, 6(5): 8989–8999. doi: 10.1109/JIOT.2019.2925843.
|
[32] |
LUO Zhiquan, MA W K, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019.
|
[33] |
GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.2[EB/OL]. http://cvxr.com/cvx, 2020.
|
[34] |
ZHOU Rui and PALOMAR D P. Solving high-order portfolios via successive convex approximation algorithms[J]. IEEE Transactions on Signal Processing, 2021, 69: 892–904. doi: 10.1109/TSP.2021.3051369.
|
[35] |
JUNGNICKEL V, POHL V, NONNIG S, et al. A physical model of the wireless infrared communication channel[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 631–640. doi: 10.1109/49.995522.
|
[36] |
MA Shuai, LI Hang, HE Yang, et al. Capacity bounds and interference management for interference channel in visible light communication networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 182–193. doi: 10.1109/TWC.2018.2878585.
|