Citation: | GAO Xueyao, YAN Shaokang, ZHANG Chunxiang. 3D Model Classification Based on Shannon Entropy Representative Feature and Voting Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1438-1447. doi: 10.11999/JEIT230405 |
[1] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
|
[2] |
SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
|
[3] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[4] |
CHARLES R Q, SU Hao, MO Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
|
[5] |
QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
|
[6] |
SONG Yupeng, HE Fazhi, DUAN Yansong, et al. A kernel correlation-based approach to adaptively acquire local features for learning 3D point clouds[J]. Computer-Aided Design, 2022, 146: 103196. doi: 10.1016/j.cad.2022.103196.
|
[7] |
张溯, 杨军. 利用空间结构信息的三维点云模型分类[J]. 小型微型计算机系统, 2021, 42(4): 779–784. doi: 10.3969/j.issn.1000-1220.2021.04.018.
ZHANG Su and YANG Jun. 3D model classification using spatial structure information[J]. Journal of Chinese Computer Systems, 2021, 42(4): 779–784. doi: 10.3969/j.issn.1000-1220.2021.04.018.
|
[8] |
HASSAN R, FRAZ M M, RAJPUT A, et al. Residual learning with annularly convolutional neural networks for classification and segmentation of 3D point clouds[J]. Neurocomputing, 2023, 526: 96–108. doi: 10.1016/j.neucom.2023.01.026.
|
[9] |
ZHOU Ruqin, LI Xixing, and JIANG Wanshou. SCANet: A spatial and channel attention based network for partial-to-partial point cloud registration[J]. Pattern Recognition Letters, 2021, 151: 120–126. doi: 10.1016/j.patrec.2021.08.002.
|
[10] |
WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1912–1920. doi: 10.1109/CVPR.2015.7298801.
|
[11] |
XU Xu and TODOROVIC S. Beam search for learning a deep convolutional neural network of 3D shapes[C]. 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 2016: 3506–3511. doi: 10.1109/ICPR.2016.7900177.
|
[12] |
KIM S, CHI H G, and RAMANI K. Object synthesis by learning part geometry with surface and volumetric representations[J]. Computer-Aided Design, 2021, 130: 102932. doi: 10.1016/j.cad.2020.102932.
|
[13] |
MA Ziping, ZHOU Jie, MA Jinlin, et al. A novel 3D shape recognition method based on double-channel attention residual network[J]. Multimedia Tools and Applications, 2022, 81(22): 32519–32548. doi: 10.1007/s11042-022-12041-9.
|
[14] |
CAI Weiwei, LIU Dong, NING Xin, et al. Voxel-based three-view hybrid parallel network for 3D object classification[J]. Displays, 2021, 69: 102076. doi: 10.1016/j.displa.2021.102076.
|
[15] |
HE Yunqian, XIA Guihua, LUO Yongkang, et al. DVFENet: Dual-branch voxel feature extraction network for 3D object detection[J]. Neurocomputing, 2021, 459: 201–211. doi: 10.1016/j.neucom.2021.06.046.
|
[16] |
SHI Baoguang, BAI Song, ZHOU Zhichao, et al. DeepPano: Deep panoramic representation for 3-D shape recognition[J]. IEEE Signal Processing Letters, 2015, 22(12): 2339–2343. doi: 10.1109/LSP.2015.2480802.
|
[17] |
SINHA A, BAI Jing, and RAMANI K. Deep learning 3D shape surfaces using geometry images[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 223–240. doi: 10.1007/978-3-319-46466-4_14.
|
[18] |
SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 945–953. doi: 10.1109/ICCV.2015.114.
|
[19] |
LIANG Qi, WANG Yixin, NIE Weizhi, et al. MVCLN: Multi-view convolutional LSTM network for cross-media 3D shape recognition[J]. IEEE Access, 2020, 8: 139792–139802. doi: 10.1109/ACCESS.2020.3012692.
|
[20] |
白静, 司庆龙, 秦飞巍. 基于卷积神经网络和投票机制的三维模型分类与检索[J]. 计算机辅助设计与图形学学报, 2019, 31(2): 303–314. doi: 10.3724/SP.J.1089.2019.17160.
BAI Jing, SI Qinglong, and QIN Feiwei. 3D model classification and retrieval based on CNN and voting scheme[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(2): 303–314. doi: 10.3724/SP.J.1089.2019.17160.
|
[21] |
HEGDE V and ZADEH R. FusionNet: 3D object classification using multiple data representations[EB/OL]. https://arxiv.org/abs/1607.05695, 2016.
|
[22] |
JIN Xun and LI De. Rotation prediction based representative view locating framework for 3D object recognition[J]. Computer-Aided Design, 2022, 150: 103279. doi: 10.1016/j.cad.2022.103279.
|
[23] |
ZHU Feng, XU Junyu, and YAO Chuanming. Local information fusion network for 3D shape classification and retrieval[J]. Image and Vision Computing, 2022, 121: 104405. doi: 10.1016/j.imavis.2022.104405.
|
[24] |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10425–10433. doi: 10.1109/CVPR42600.2020.01044.
|
[25] |
WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
|