Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
GAO Xueyao, YAN Shaokang, ZHANG Chunxiang. 3D Model Classification Based on Shannon Entropy Representative Feature and Voting Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1438-1447. doi: 10.11999/JEIT230405
Citation: GAO Xueyao, YAN Shaokang, ZHANG Chunxiang. 3D Model Classification Based on Shannon Entropy Representative Feature and Voting Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1438-1447. doi: 10.11999/JEIT230405

3D Model Classification Based on Shannon Entropy Representative Feature and Voting Mechanism

doi: 10.11999/JEIT230405
Funds:  The National Natural Science Foundation of China (61502124, 60903082), China Postdoctoral Science Foundation (2014M560249), Heilongjiang Provincial Natural Science Foundation of China (LH2022F031, LH2022F030, F2015041, F201420)
  • Received Date: 2023-05-12
  • Rev Recd Date: 2023-12-12
  • Available Online: 2023-12-20
  • Publish Date: 2024-04-24
  • At present, view-based 3D model classification has the problems of insufficient visual information for single view and redundant information for multiple views, and treating all views equally will ignore the differences between different projection angles. To solve the above problems, a 3D model classification method based on Shannon entropy representative feature and voting mechanism is proposed. Firstly, multiple angle groups are set uniformly around 3D model, and multiple view sets representing the model are obtained. In order to extract effectively deep features from view, channel attention mechanism is introduced into the feature extraction network. Secondly, based on view discriminative features output from Softmax function, Shannon entropy is used to select representative feature for avoiding redundant feature of multiple views. Finally, based on representative features from multiple angle groups, voting mechanism is used to classify 3D model. Experiments show that the classification accuracy of the proposed method on 3D model dataset ModelNet10 reaches 96.48%, and classification performance is outstanding.
  • loading
  • [1]
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386.
    [2]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    [3]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    [4]
    CHARLES R Q, SU Hao, MO Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 77–85. doi: 10.1109/CVPR.2017.16.
    [5]
    QI C R, YI Li, SU Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5105–5114.
    [6]
    SONG Yupeng, HE Fazhi, DUAN Yansong, et al. A kernel correlation-based approach to adaptively acquire local features for learning 3D point clouds[J]. Computer-Aided Design, 2022, 146: 103196. doi: 10.1016/j.cad.2022.103196.
    [7]
    张溯, 杨军. 利用空间结构信息的三维点云模型分类[J]. 小型微型计算机系统, 2021, 42(4): 779–784. doi: 10.3969/j.issn.1000-1220.2021.04.018.

    ZHANG Su and YANG Jun. 3D model classification using spatial structure information[J]. Journal of Chinese Computer Systems, 2021, 42(4): 779–784. doi: 10.3969/j.issn.1000-1220.2021.04.018.
    [8]
    HASSAN R, FRAZ M M, RAJPUT A, et al. Residual learning with annularly convolutional neural networks for classification and segmentation of 3D point clouds[J]. Neurocomputing, 2023, 526: 96–108. doi: 10.1016/j.neucom.2023.01.026.
    [9]
    ZHOU Ruqin, LI Xixing, and JIANG Wanshou. SCANet: A spatial and channel attention based network for partial-to-partial point cloud registration[J]. Pattern Recognition Letters, 2021, 151: 120–126. doi: 10.1016/j.patrec.2021.08.002.
    [10]
    WU Zhirong, SONG Shuran, KHOSLA A, et al. 3D ShapeNets: A deep representation for volumetric shapes[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1912–1920. doi: 10.1109/CVPR.2015.7298801.
    [11]
    XU Xu and TODOROVIC S. Beam search for learning a deep convolutional neural network of 3D shapes[C]. 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 2016: 3506–3511. doi: 10.1109/ICPR.2016.7900177.
    [12]
    KIM S, CHI H G, and RAMANI K. Object synthesis by learning part geometry with surface and volumetric representations[J]. Computer-Aided Design, 2021, 130: 102932. doi: 10.1016/j.cad.2020.102932.
    [13]
    MA Ziping, ZHOU Jie, MA Jinlin, et al. A novel 3D shape recognition method based on double-channel attention residual network[J]. Multimedia Tools and Applications, 2022, 81(22): 32519–32548. doi: 10.1007/s11042-022-12041-9.
    [14]
    CAI Weiwei, LIU Dong, NING Xin, et al. Voxel-based three-view hybrid parallel network for 3D object classification[J]. Displays, 2021, 69: 102076. doi: 10.1016/j.displa.2021.102076.
    [15]
    HE Yunqian, XIA Guihua, LUO Yongkang, et al. DVFENet: Dual-branch voxel feature extraction network for 3D object detection[J]. Neurocomputing, 2021, 459: 201–211. doi: 10.1016/j.neucom.2021.06.046.
    [16]
    SHI Baoguang, BAI Song, ZHOU Zhichao, et al. DeepPano: Deep panoramic representation for 3-D shape recognition[J]. IEEE Signal Processing Letters, 2015, 22(12): 2339–2343. doi: 10.1109/LSP.2015.2480802.
    [17]
    SINHA A, BAI Jing, and RAMANI K. Deep learning 3D shape surfaces using geometry images[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 223–240. doi: 10.1007/978-3-319-46466-4_14.
    [18]
    SU Hang, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 945–953. doi: 10.1109/ICCV.2015.114.
    [19]
    LIANG Qi, WANG Yixin, NIE Weizhi, et al. MVCLN: Multi-view convolutional LSTM network for cross-media 3D shape recognition[J]. IEEE Access, 2020, 8: 139792–139802. doi: 10.1109/ACCESS.2020.3012692.
    [20]
    白静, 司庆龙, 秦飞巍. 基于卷积神经网络和投票机制的三维模型分类与检索[J]. 计算机辅助设计与图形学学报, 2019, 31(2): 303–314. doi: 10.3724/SP.J.1089.2019.17160.

    BAI Jing, SI Qinglong, and QIN Feiwei. 3D model classification and retrieval based on CNN and voting scheme[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(2): 303–314. doi: 10.3724/SP.J.1089.2019.17160.
    [21]
    HEGDE V and ZADEH R. FusionNet: 3D object classification using multiple data representations[EB/OL]. https://arxiv.org/abs/1607.05695, 2016.
    [22]
    JIN Xun and LI De. Rotation prediction based representative view locating framework for 3D object recognition[J]. Computer-Aided Design, 2022, 150: 103279. doi: 10.1016/j.cad.2022.103279.
    [23]
    ZHU Feng, XU Junyu, and YAO Chuanming. Local information fusion network for 3D shape classification and retrieval[J]. Image and Vision Computing, 2022, 121: 104405. doi: 10.1016/j.imavis.2022.104405.
    [24]
    RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 10425–10433. doi: 10.1109/CVPR42600.2020.01044.
    [25]
    WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 11531–11539. doi: 10.1109/CVPR42600.2020.01155.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (267) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return