Citation: | SUN Junchang, GU Rongyan, MA Shuai, CHAI Jinjin, LI Shiyin. An RIS assisted Wideband Millimeter Wave SISO-Based Positioning Method[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1240-1246. doi: 10.11999/JEIT230401 |
[1] |
王丹阳, 薛秀珍, 魏伟, 等. 基于多天线信号合成的优化到达时间差定位算法[J]. 光学技术, 2022, 48(5): 536–540. doi: 10.13741/j.cnki.11-1879/o4.2022.05.004.
WANG Danyang, XUE Xiuzhen, WEI Wei, et al. Optimal the time difference of arrival location algorithm localization algorithm based on multi-antenna signal combining[J]. Optical Technique, 2022, 48(5): 536–540. doi: 10.13741/j.cnki.11-1879/o4.2022.05.004.
|
[2] |
郭文飞, 齐书峰, 邓玥, 等. 融合TOA/AOD的5G/SINS紧组合导航定位算法分析[J]. 测绘学报, 2023, 52(3): 367–374. doi: 10.11947/j.AGCS.2023.20210555.
GUO Wenfei, QI Shufeng, DENG Yue, et al. Analysis of 5G/SINS tightly coupled navigation algorithm with TOA/AOD[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(3): 367–374. doi: 10.11947/j.AGCS.2023.20210555.
|
[3] |
PALACIOS J, BIELSA G, CASARI P, et al. Single- and multiple-access point indoor localization for millimeter-wave networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(3): 1927–1942. doi: 10.1109/TWC.2019.2899313.
|
[4] |
TALVITIE J, KOIVISTO M, LEVANEN T, et al. High-accuracy joint position and orientation estimation in sparse 5G mmWave channel[C]. 2019 IEEE International Conference on Communications, Shanghai, China, 2019: 1–7.
|
[5] |
SHAHMANSOORI A, UGUEN B, DESTINO G, et al. Tracking position and orientation through millimeter wave lens MIMO in 5G systems[J]. IEEE Signal Processing Letters, 2019, 26(8): 1222–1226. doi: 10.1109/LSP.2019.2925969.
|
[6] |
SHAHMANSOORI A, GARCIA G E, DESTINO G, et al. Position and orientation estimation through millimeter-wave MIMO in 5G systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1822–1835. doi: 10.1109/TWC.2017.2785788.
|
[7] |
MENDRZIK R, WYMEERSCH H, BAUCH G, et al. Harnessing NLOS components for position and orientation estimation in 5G millimeter wave MIMO[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 93–107. doi: 10.1109/TWC.2018.2877615.
|
[8] |
FASCISTA A, COLUCCIA A, WYMEERSCH H, et al. Millimeter-wave downlink positioning with a single-antenna receiver[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4479–4490. doi: 10.1109/TWC.2019.2925618.
|
[9] |
LIN Zhipeng, LV Tiejun, and MATHIOPOULOS P T. 3-D indoor positioning for millimeter-wave massive MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(6): 2472–2486. doi: 10.1109/TCOMM.2018.2797993.
|
[10] |
GARCIA N, WYMEERSCH H, LARSSON E G, et al. Direct localization for massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2475–2487. doi: 10.1109/TSP.2017.2666779.
|
[11] |
GUO Shisheng, ZHAO Qingsong, CUI Guolong, et al. Behind corner targets location using small aperture millimeter wave radar in NLOS urban environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 460–470. doi: 10.1109/JSTARS.2020.2963924.
|
[12] |
崔铁军. 电磁超材料—从等效媒质到现场可编程系统[J]. 中国科学:信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123.
CUI Tiejun. Electromagnetic metamaterials-from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123.
|
[13] |
WU Qingqing and ZHANG Rui. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5394–5409. doi: 10.1109/TWC.2019.2936025.
|
[14] |
WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107.
|
[15] |
刘海霞, 易浩, 马向进, 等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022, 43(12): 32–44. doi: 10.11959/j.issn.1000-436x.2022229.
LIU Haixia, YI Hao, MA Xiangjin, et al. Indoor wireless signal coverage and enhancement based on passive reconfigurable intelligent metasurface[J]. Journal on Communications, 2022, 43(12): 32–44. doi: 10.11959/j.issn.1000-436x.2022229.
|
[16] |
LIU Penglu, LI Yong, CHENG Wei, et al. Intelligent reflecting surface aided NOMA for millimeter-wave massive MIMO with lens antenna array[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4419–4434. doi: 10.1109/TVT.2021.3067938.
|
[17] |
LIU Yang, SHI Qingjiang, WU Qingqing, et al. Joint node activation, beamforming and phase-shifting control in IoT sensor network assisted by reconfigurable intelligent surface[J]. IEEE Transactions on Wireless Communications, 2022, 21(11): 9325–9340. doi: 10.1109/TWC.2022.3175740.
|
[18] |
ZHANG Jingwen, ZHENG Zhong, FEI Zesong, et al. Positioning with dual reconfigurable intelligent surfaces in millimeter-wave MIMO systems[C]. 2020 IEEE/CIC International Conference on Communications in China, Chongqing, China, 2020: 800–805.
|
[19] |
ZHANG Haobo, ZHANG Hongliang, DI Boya, et al. Towards ubiquitous positioning by leveraging reconfigurable intelligent surface[J]. IEEE Communications Letters, 2021, 25(1): 284–288. doi: 10.1109/LCOMM.2020.3023130.
|
[20] |
ABU-SHABAN Z, KEYKHOSRAVI K, KESKIN M F, et al. Near-field localization with a reconfigurable intelligent surface acting as lens[C]. 2021 IEEE International Conference on Communications, Montreal, QC, Canada, 2021: 1–6.
|
[21] |
KEYKHOSRAVI K, KESKIN M F, SECO-GRANADOS G, et al. SISO RIS-enabled joint 3D downlink localization and synchronization[C]. 2021 IEEE International Conference on Communications, Montreal, Canada, 2021: 1–6.
|
[22] |
RAHAL M, DENIS B, KEYKHOSRAVI K, et al. RIS-enabled localization continuity under near-field conditions[C]. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2021: 436–440.
|
[23] |
RINCHI O, ELZANATY A, and ALOUINI M S. Compressive near-field localization for multipath RIS-aided environments[J]. IEEE Communications Letters, 2022, 26(6): 1268–1272. doi: 10.1109/LCOMM.2022.3151036.
|
[24] |
WANG Wei and ZHANG Wei. Joint beam training and positioning for intelligent reflecting surfaces assisted millimeter wave communications[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6282–6297. doi: 10.1109/TWC.2021.3073140.
|
[25] |
KEYKHOSRAVI K, KESKIN M F, SECO-GRANADOS G, et al. RIS-enabled SISO localization under user mobility and spatial-wideband effects[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1125–1140. doi: 10.1109/JSTSP.2022.3175036.
|
[26] |
WANG Bolei, GAO Feifei, JIN Shi, et al. Spatial- and frequency-wideband effects in millimeter-wave massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3393–3406. doi: 10.1109/TSP.2018.2831628.
|
[27] |
CAI Mingming, GAO Kang, NIE Ding, et al. Effect of wideband beam squint on codebook design in phased-array wireless systems[C]. 2016 IEEE Global Communications Conference, Washington, D.C., USA, 2016: 1–6.
|
[28] |
MYERS N J and HEATH R W. InFocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming[J]. IEEE Transactions on Wireless Communications, 2022, 21(4): 2193–2209. doi: 10.1109/TWC.2021.3110011.
|
[29] |
MA Siqi, SHEN Wenqian, AN Jianping, et al. Wideband channel estimation for IRS-aided systems in the face of beam squint[J]. IEEE Transactions on Wireless Communications, 2021, 20(10): 6240–6253. doi: 10.1109/TWC.2021.3072694.
|