Citation: | DING Jianrui, WANG Lingtao, TANG Fenghe, NING Chunping. Ultrasound Image Lesion Detection Algorithm Optimized by Feature Feedback Mechanism[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1013-1021. doi: 10.11999/JEIT230385 |
[1] |
WATAYA T, YANAGAWA M, TSUBAMOTO M, et al. Radiologists with and without deep learning–based computer-aided diagnosis: Comparison of performance and interobserver agreement for characterizing and diagnosing pulmonary nodules/masses[J]. European Radiology, 2023, 33(1): 348–359. doi: 10.1007/s00330-022-08948-4.
|
[2] |
SOLYMOSI T, HEGEDŰS L, BONNEMA S J, et al. Considerable interobserver variation calls for unambiguous definitions of thyroid nodule ultrasound characteristics[J]. European Thyroid Journal, 2023, 12(2): e220134. doi: 10.1530/ETJ-22-0134.
|
[3] |
YAP M H, GOYAL M, OSMAN F, et al. Breast ultrasound region of interest detection and lesion localisation[J]. Artificial Intelligence in Medicine, 2020, 107: 101880. doi: 10.1016/j.artmed.2020.101880.
|
[4] |
LI Yujie, GU Hong, WANG Hongyu, et al. BUSnet: A deep learning model of breast tumor lesion detection for ultrasound images[J]. Frontiers in Oncology, 2022, 12: 848271. doi: 10.3389/fonc.2022.848271.
|
[5] |
MENG Hui, LIU Xuefeng, NIU Jianwei, et al. DGANet: A dual global attention neural network for breast lesion detection in ultrasound images[J]. Ultrasound in Medicine and Biology, 2023, 49(1): 31–44. doi: 10.1016/j.ultrasmedbio.2022.07.006.
|
[6] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
[7] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031.
|
[8] |
LIANG Tingting, CHU Xiaojie, LIU Yudong, et al. CBNet: A composite backbone network architecture for object detection[J]. IEEE Transactions on Image Processing, 2022, 31: 6893–6906. doi: 10.1109/TIP.2022.3216771.
|
[9] |
QIAO Siyuan, CHEN L C, and YUILLE A. DetectoRS: Detecting objects with recursive feature pyramid and switchable atrous convolution[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10208–10219.
|
[10] |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
|
[11] |
REDMON J and FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv: 1804.02767, 2018.
|
[12] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 9626–9635.
|
[13] |
ZHANG Haoyang, WANG Ying, DAYOUB F, et al. VarifocalNet: An IoU-aware dense object detector[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8510–8519.
|
[14] |
CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13034–13043.
|
[15] |
TAN Mingxing, PANG Ruoming, and LE Q V. EfficientDet: Scalable and efficient object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10778–10787.
|
[16] |
GE Zheng, LIU Songtao, WANG Feng, et al. YOLOX: Exceeding YOLO series in 2021[J]. arXiv preprint arXiv: 2107.08430, 2021.
|
[17] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv: 2207.02696, 2022.
|
[18] |
WANG Wen, ZHANG Jing, CAO Yang, et al. Towards data-efficient detection transformers[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 88–105.
|
[19] |
CHEN Xiangyu, HU Qinghao, LI Kaidong, et al. Accumulated trivial attention matters in vision transformers on small datasets[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3973–3981.
|
[20] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229.
|
[21] |
LIU Shilong, LI Feng, ZHANG Hao, et al. DAB-DETR: Dynamic anchor boxes are better queries for DETR[C]. The Tenth International Conference on Learning Representations (Virtual), 2022: 1–20. doi: 10.48550/arXiv.2201.12329.
|
[22] |
ZHANG Hao, LI Feng, LIU Shilong, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[C]. The Eleventh International Conference on Learning Representations, Kigali, Rwanda, 2023: 1–19. doi: 10.48550/arXiv.2203.03605.
|
[23] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
[24] |
LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 11966–11976.
|
[25] |
PENG Zhiliang, GUO Zonghao, HUANG Wei, et al. Conformer: Local features coupling global representations for recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 9454–9468. doi: 10.1109/TPAMI.2023.3243048.
|
[26] |
WANG W, DAI J, CHEN Z, et al. Internimage: Exploring large-scale vision foundation models with deformable convolutions[C]. IEEE Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 14408–14419.
|
[27] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626.
|