Citation: | SHEN Bin, LI Yue, WANG Xin, WANG Zixin. Wireless Spectrum Status Sensing Driven by Few-Shot Learning[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1231-1239. doi: 10.11999/JEIT230377 |
[1] |
KHALEK N A and HAMOUDA W. Unsupervised two-stage learning framework for cooperative spectrum sensing[C]. ICC 2021 - IEEE International Conference on Communications. Montreal, Canada: IEEE, 2021: 1–6. doi: 10.1109/ICC42927.2021.9500681.
|
[2] |
KRISHNAKUMAR V, SAVARINATHAN P, KARUPPASAMY T, et al. Machine learning based spectrum sensing and distribution in a cognitive radio network[C]. 2022 International Conference on Computer Communication and Informatics (ICCCI). Coimbatore, India: IEEE, 2022: 1–4. doi: 10.1109/ICCCI54379.2022.9740824.
|
[3] |
LU Yingqi, ZHU Pai, WANG Donglin, et al. Machine learning techniques with probability vector for cooperative spectrum sensing in cognitive radio networks[C]. 2016 IEEE Wireless Communications and Networking Conference. Doha, Qatar: IEEE, 2016: 1–6. doi: 10.1109/WCNC.2016.7564840.
|
[4] |
CHEN Siji, SHEN Bin, WANG Xin, et al. SVM and decision stumps based hybrid AdaBoost classification algorithm for cognitive radios[C]. 2019 21st International Conference on Advanced Communication Technology (ICACT). PyeongChang, Korea (South): IEEE, 2019: 492–497. doi: 10.23919/ICACT.2019.8702007.
|
[5] |
LIU Chang, WANG Jie, LIU Xuemeng, et al. Deep cm-cnn for spectrum sensing in cognitive radio[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306–2321. doi: 10.1109/JSAC.2019.2933892.
|
[6] |
盖建新, 薛宪峰, 吴静谊, 等. 基于深度卷积神经网络的协作频谱感知方法[J]. 电子与信息学报, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005.
GAI Jianxin, XUE Xianfeng, WU Jingyi, et al. Cooperative spectrum sensing method based on deep convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2911–2919. doi: 10.11999/JEIT201005.
|
[7] |
申滨, 王欣, 陈思吉, 等. 基于机器学习主用户发射模式分类的蜂窝认知无线电网络频谱感知 [J]. 电子与信息学报, 2021, 43(1): 92–100. doi: 10.11999/JEIT191012.
SHEN Bin, WANG Xin, CHEN Siji, et al. Machine learning based primary user transmit mode classification for spectrum sensing in cellular cognitive radio network[J] Journal of Electronics & Information Technology, 2021, 43(1): 92–100. doi: 10.11999/JEIT191012.
|
[8] |
WANG Yu, WANG Xin, SHEN Bin, et al. Clustering optimization and hog feature extraction based primary user activity scene recognition scheme[C]. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). Helsinki, Finland: IEEE, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860431.
|
[9] |
SONG Yisheng, WANG Tingyuan, CAI Puyu, et al. A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities[J]. ACM Computing Surveys, 2023, 55(13s): 271. doi: 10.1145/3582688.
|
[10] |
TIAN Pinzhuo and GAO Yang. Improving meta-learning model via meta-contrastive loss[J]. Frontiers of Computer Science, 2022, 16(5): 165331. doi: 10.1007/s11704-021-1188-9.
|
[11] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. The 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: Curran Associates Inc., 2016. doi: 10.48550/arXiv.1606.04080.
|
[12] |
LIU Yongfei, ZHANG Xiangyi, ZHANG Songyang, et al. Part-aware prototype network for few-shot semantic segmentation[C]. 16th European Conference on Computer Vision. Glasgow, UK: Springer, 2020. doi: 10.1007/978-3-030-58545-7_9.
|
[13] |
RAVI S and LAROCHELLE H. Optimization as a model for few-shot learning[C]. 5th International Conference on Learning Representations. Toulon, France: OpenReview. net, 2017.
|
[14] |
FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning. Proceedings of Machine Learning Research(PMLR). PMLR, 2017: 1126-1135.
|
[15] |
BATENI P, GOYAL R, MASRANI V, et al. Improved few-shot visual classification[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 14481–14490. doi: 10.1109/CVPR42600.2020.01450.
|
[16] |
ZHANG Chi, CAI Yujun, LIN Guosheng, et al. DeepEMD: Few-shot image classification with differentiable earth mover’s distance and structured classifiers[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, USA: IEEE, 2020: 12200–12210. doi: 10.1109/CVPR42600.2020.01222.
|
[17] |
SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 1199–1208. doi: 10.1109/CVPR.2018.00131.
|
[18] |
WANG Yaqing, YAO Quanming, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys, 2021, 53(3): 63. doi: 10.1145/3386252.
|
[19] |
ESHEL A, OSTROMETZKY J, GAT S, et al. Spatial reconstruction of rain fields from wireless telecommunication networks—scenario-dependent analysis of idw-based algorithms[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(5): 770–774. doi: 10.1109/LGRS.2019.2935348.
|
[20] |
DIAGO-MOSQUERA M, ARAGÓN-ZAVALA A, AZPILICUETA L, et al. A 3-D indoor analysis of path loss modeling using kriging techniques[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(6): 1218–1222. doi: 10.1109/LAWP.2022.3162160.
|