Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Junfan, CHEN Yi, GAO Mingyu, HE Zhiwei, DONG Zhekang, MIAO Qiheng. A New Paradigm for Intelligent Traffic Perception: A Traffic Sign Detection Architecture for the Metaverse[J]. Journal of Electronics & Information Technology, 2024, 46(3): 777-789. doi: 10.11999/JEIT230357
Citation: WANG Junfan, CHEN Yi, GAO Mingyu, HE Zhiwei, DONG Zhekang, MIAO Qiheng. A New Paradigm for Intelligent Traffic Perception: A Traffic Sign Detection Architecture for the Metaverse[J]. Journal of Electronics & Information Technology, 2024, 46(3): 777-789. doi: 10.11999/JEIT230357

A New Paradigm for Intelligent Traffic Perception: A Traffic Sign Detection Architecture for the Metaverse

doi: 10.11999/JEIT230357
Funds:  Zhejiang Provincial Major Research and Development Project of China (2023C01132), Hangzhou Major Science and Technology Innovation Project of China (2022AIZD0009)
  • Received Date: 2023-05-04
  • Rev Recd Date: 2023-12-01
  • Available Online: 2023-12-12
  • Publish Date: 2024-03-27
  • Traffic sign detection plays an important role in the safe and stable operation of intelligent transportation systems and intelligent driving. Unbalanced data distribution and monotonous scene will lead to poor model performance, but building a complete real traffic scene dataset requires expensive time and labor costs. Based on this, a new metaverse-oriented traffic sign detection paradigm is proposed to alleviate the dependence of existing methods on real data. Firstly, by establishing the scene mapping and model mapping between the metaverse and the physical world, the efficient operation of the detection algorithm between the virtual and real worlds is realized. As a virtualized digital world, Metaverse can complete custom scene construction based on the physical world, and provide massive and diverse virtual scene data for the model. At the same time, knowledge distillation and the mean teacher model is combined in this paper to establish a model mapping to deal with the problem of data differences between the metaverse and the physical world. Secondly, in order to further improve the adaptability of the training model under the Metaverse to the real driving environment, a heuristic attention mechanism is designed to improve the generalization ability of the detection model by locating and learning features. The proposed architecture is experimentally verified on the CURE-TSD, KITTI, Virtual KITTI (VKITTI) datasets. Experimental results show that the proposed metaverse-oriented traffic sign detector has excellent detection results in the physical world without relying on a large number of real scenes, and the detection accuracy reaches 89.7%, which is higher than other detection methods of recent years.
  • loading
  • [1]
    KUSUMA A T and SUPANGKAT S H. Metaverse fundamental technologies for smart city: A literature review[C]. 2022 International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia, 2022: 1–7. doi: 10.1109/ICISS55894.2022.9915079.
    [2]
    TEMEL D, CHEN M H, and ALREGIB G. Traffic sign detection under challenging conditions: A deeper look into performance variations and spectral characteristics[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3663–3673. doi: 10.1109/TITS.2019.2931429.
    [3]
    LIU Yuanyuan, PENG Jiyao, XUE Jinghao, et al. TSingNet: Scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild[J]. Neurocomputing, 2021, 447: 10–22. doi: 10.1016/j.neucom.2021.03.049.
    [4]
    LARSSON F and FELSBERG M. Using fourier descriptors and spatial models for traffic sign recognition[C]. The 17th Scandinavian Conference on Image Analysis, Ystad, Sweden, 2011: 238–249. doi: 10.1007/978-3-642-21227-7_23.
    [5]
    董哲康, 钱智凯, 周广东, 等. 基于忆阻的全功能巴甫洛夫联想记忆电路的设计、实现与分析[J]. 电子与信息学报, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.

    DONG Zhekang, QIAN Zhikai, ZHOU Guangdong, et al. Memory circuit design, implementation and analysis based on memristor full-function pavlov associative[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2080–2092. doi: 10.11999/JEIT210376.
    [6]
    HORN D and HOUBEN S. Fully automated traffic sign substitution in real-world images for large-scale data augmentation[C]. 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, USA, 2020: 465–471. doi: 10.1109/IV47402.2020.9304547.
    [7]
    杨宇翔, 曹旗, 高明煜, 等. 基于多阶段多尺度彩色图像引导的道路场景深度图像补全[J]. 电子与信息学报, 2022, 44(11): 3951–3959. doi: 10.11999/JEIT210967.

    YANG Yuxiang, CAO Qi, GAO Mingyu, et al. Multi-stage multi-scale color guided depth image completion for road scenes[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3951–3959. doi: 10.11999/JEIT210967.
    [8]
    MIN Weidong, LIU Ruikang, HE Daojing, et al. Traffic sign recognition based on semantic scene understanding and structural traffic sign location[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15794–15807. doi: 10.1109/TITS.2022.3145467.
    [9]
    董哲康, 杜晨杰, 林辉品, 等. 基于多通道忆阻脉冲耦合神经网络的多帧图像超分辨率重建算法[J]. 电子与信息学报, 2020, 42(4): 835–843. doi: 10.11999/JEIT190868.

    DONG Zhekang, DU Chenjie, LIN Huipin, et al. Multi-channel memristive pulse coupled neural network based multi-frame images super-resolution reconstruction algorithm[J]. Journal of Electronics & Information Technology, 2020, 42(4): 835–843. doi: 10.11999/JEIT 190868.
    [10]
    LI Zhishan, CHEN Mingmu, HE Yifan, et al. An efficient framework for detection and recognition of numerical traffic signs[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 2235–2239. doi: 10.1109/ICASSP43922.2022.9747406.
    [11]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [12]
    CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [13]
    HAN Kai, WANG Yunhe, CHEN Hanting, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87–110. doi: 10.1109/TPAMI.2022.3152247.
    [14]
    WEI Hongyang, ZHANG Qianqian, QIAN Yurong, et al. MTSDet: Multi-scale traffic sign detection with attention and path aggregation[J]. Applied Intelligence, 2023, 53(1): 238–250. doi: 10.1007/s10489-022-03459-7.
    [15]
    WANG Junfan, CHEN Yi, DONG Zhekang, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853–7865. doi: 10.1007/s00521-022-08077-5.
    [16]
    KIM J Y and OH J M. Opportunities and challenges of metaverse for automotive and mobility industries[C]. The 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 2022: 113–117. doi: 10.1109/ICTC55196.2022.9952976.
    [17]
    ZHANG Hui, LUO Guiyang, LI Yidong, et al. Parallel vision for intelligent transportation systems in metaverse: Challenges, solutions, and potential applications[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3400–3413. doi: 10.1109/TSMC.2022.3228314.
    [18]
    JIANG Pengtao, ZHANG Changbin, HOU Qibin, et al. LayerCAM: Exploring hierarchical class activation maps for localization[J]. IEEE Transactions on Image Processing, 2021, 30: 5875–5888. doi: 10.1109/TIP.2021.3089943.
    [19]
    THORPE S, FIZE D, and MARLOT C. Speed of processing in the human visual system[J]. Nature, 1996, 381(6582): 520–522. doi: 10.1038/381520a0.
    [20]
    GAIDON A, WANG Qiao, CABON Y, et al. VirtualWorlds as proxy for multi-object tracking analysis[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 4340–4349. doi: 10.1109/CVPR.2016.470.
    [21]
    GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: The KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231–1237. doi: 10.1177/0278364913491297.
    [22]
    SHREINER D. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Versions 3.0 and 3.1[M]. Addison-Wesley Professional, 2009.
    [23]
    TORII A, HAVLENA M, and PAJDLA T. From google street view to 3D city models[C]. The IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 2009: 2188–2195. doi: 10.1109/ICCVW.2009.5457551.
    [24]
    NJOKU J N, NWAKANMA C I, AMAIZU G C, et al. Prospects and challenges of Metaverse application in data-driven intelligent transportation systems[J]. IET Intelligent Transport Systems, 2023, 17(1): 1–21. doi: 10.1049/itr2.12252.
    [25]
    PAMUCAR D, DEVECI M, GOKASAR I, et al. A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms[J]. Technological Forecasting and Social Change, 2022, 182: 121778. doi: 10.1016/j.techfore.2022.121778.
    [26]
    SONG Jie, CHEN Ying, YE Jingwen, et al. Spot-adaptive knowledge distillation[J]. IEEE Transactions on Image Processing, 2022, 31: 3359–3370. doi: 10.1109/TIP.2022.3170728.
    [27]
    LIU Yuyuan, TIAN Yu, CHEN Yuanhong, et al. Perturbed and strict mean teachers for semi-supervised semantic segmentation[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 4248–4257. doi: 10.1109/CVPR52688.2022.00422.
    [28]
    张润丰, 姚伟, 石重托, 等. 融合虚拟对抗训练和均值教师模型的主导失稳模式识别半监督学习框架[J]. 中国电机工程学报, 2022, 42(20): 7497–7508. doi: 10.13334/j.0258-8013.pcsee.211673.

    ZHANG Runfeng, YAO Wei, SHI Zhongtuo, et al. Semi-supervised learning framework of dominant instability mode identification via fusion of virtual adversarial training and mean teacher model[J]. Proceedings of the CSEE, 2022, 42(20): 7497–7508. doi: 10.13334/j.0258-8013.pcsee.211673.
    [29]
    DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: Making VGG-style ConvNets great again[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 13728–13737. doi: 10.1109/CVPR46437.2021.01352.
    [30]
    WANG Jibin and ZHANG Shuo. An improved deep learning approach based on exponential moving average algorithm for atrial fibrillation signals identification[J]. Neurocomputing, 2022, 513: 127–136. doi: 10.1016/j.neucom.2022.09.079.
    [31]
    CHAUDHARI S, MITHAL V, POLATKAN G, et al. An attentive survey of attention models[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(5): 53. doi: 10.1145/3465055.
    [32]
    RUEDA M R, POZUELOS J P, CÓMBITA L M, et al. Cognitive neuroscience of attention from brain mechanisms to individual differences in efficiency[J]. AIMS Neuroscience, 2015, 2(4): 183–202. doi: 10.3934/Neuroscience.2015.4.183.
    [33]
    ROSSI L F, HARRIS K D, and CARANDINI M. Spatial connectivity matches direction selectivity in visual cortex[J]. Nature, 2020, 588(7839): 648–652. doi: 10.1038/s41586-020-2894-4.
    [34]
    LUO Zhengding, LI Junting, and ZHU Yuesheng. A deep feature fusion network based on multiple attention mechanisms for joint iris-periocular biometric recognition[J]. IEEE Signal Processing Letters, 2021, 28: 1060–1064. doi: 10.1109/LSP.2021.3079850.
    [35]
    WANG Junfan, CHEN Yi, JI Xiaoyue, et al. Vehicle-mounted adaptive traffic sign detector for small-sized signs in multiple working conditions[J]. IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2023.3309644.
    [36]
    GU Yang and SI Bingfeng. A novel lightweight real-time traffic sign detection integration framework based on YOLOv4[J]. Entropy, 2022, 24(4): 487. doi: 10.3390/e24040487.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views (688) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return