Advanced Search
Volume 46 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
TANG Lun, SHAN Zhenzhen, WEN Mingyan, LI Li, CHEN Qianbin. Digital Twin-assisted Task Offloading Algorithms for the Industrial Internet of Things[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1296-1305. doi: 10.11999/JEIT230317
Citation: TANG Lun, SHAN Zhenzhen, WEN Mingyan, LI Li, CHEN Qianbin. Digital Twin-assisted Task Offloading Algorithms for the Industrial Internet of Things[J]. Journal of Electronics & Information Technology, 2024, 46(4): 1296-1305. doi: 10.11999/JEIT230317

Digital Twin-assisted Task Offloading Algorithms for the Industrial Internet of Things

doi: 10.11999/JEIT230317
Funds:  The National Natural Science Foundation of China (62071078), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601), Sichuan and Chongqing Key R&D Projects (2021YFQ0053), The Natural Science Project of Guizhou Provincial Department of Education (QJHKYZ[2021]236)
  • Received Date: 2023-04-26
  • Rev Recd Date: 2024-02-28
  • Available Online: 2024-03-08
  • Publish Date: 2024-04-24
  • To address the low efficiency of task collaboration computation caused by limited resources of Industrial Internet of Things (IIoT) devices and dynamic changes of edge server resources, a Digital Twin (DT)-assisted task offloading algorithm is proposed for IIoT. First, the cloud-edge-end three-layer digital twin-assisted task offloading framework is constructed by the algorithm, and the approximate optimal task offloading strategy is generated in the created digital twin layer. Second, under the constraints of task computation time and energy, the joint optimization problem of user association and task partition in the computation offloading process is studied from the perspective of delay. An optimization model is established with the goal of minimizing the task offloading time and service failure penalty. Finally, a user association and task partition algorithm based on Deep Multi-Agent Parameterized Q-Network (DMAPQN) is proposed. The approximate optimal user association and task partition strategy is obtained by each intelligent agent through continuous exploration and learning, and it is issued to the physical entity network for execution. Simulation results show that the proposed task offloading algorithm effectively reduces the task collaboration computation time and provides approximate optimal offloading strategies for each computational task.
  • loading
  • [1]
    WU Yiwen, ZHANG Ke, and ZHANG Yan. Digital twin networks: A survey[J]. IEEE Internet of Things Journal, 2021, 8(18): 13789–13804. doi: 10.1109/JIOT.2021.3079510.
    [2]
    ZHAO Liang, HAN Guangjie, LI Zhuhui, et al. Intelligent digital twin-based software-defined vehicular networks[J]. IEEE Network, 2020, 34(5): 178–184. doi: 10.1109/MNET.011.1900587.
    [3]
    LIU Tong, TANG Lun, WANG Weili, et al. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network[J]. IEEE Internet of Things Journal, 2022, 9(2): 1427–1444. doi: 10.1109/JIOT.2021.3086961.
    [4]
    LI Bin, LIU Yufeng, TAN Ling, et al. Digital twin assisted task offloading for aerial edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10863–10877. doi: 10.1109/TVT.2022.3182647.
    [5]
    DAI Yueyue, ZHANG Ke, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4968–4977. doi: 10.1109/TII.2020.3016320.
    [6]
    YE Qiaoyang, RONG Beiyu, CHEN Yudong, et al. User association for load balancing in heterogeneous cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(6): 2706–2716. doi: 10.1109/TWC. 2013.040413.120676.
    [7]
    DO-DUY T, VAN HUYNH D, DOBRE O A, et al. Digital twin-aided intelligent offloading with edge selection in mobile edge computing[J]. IEEE Wireless Communications Letters, 2022, 11(4): 806–810. doi: 10.1109/LWC.2022.3146207.
    [8]
    LI Mushu, GAO Jie, ZHAO Lian, et al. Deep reinforcement learning for collaborative edge computing in vehicular networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(4): 1122–1135. doi: 10.1109/TCCN.2020.3003036.
    [9]
    VAN HUYNH D, VAN-DINH NGUYEN, SHARMA V, et al. Digital twin empowered ultra-reliable and low-latency communications-based edge networks in industrial IoT environment[C]. ICC 2022 - IEEE International Conference on Communications, Seoul, Republic of, Korea, 2022: 5651–5656. doi: 10.1109/ICC45855.2022.9838860.
    [10]
    HU Han, WANG Qun, HU R Q, et al. Mobility-aware offloading and resource allocation in a MEC-enabled IoT network with energy harvesting[J]. IEEE Internet of Things Journal, 2021, 8(24): 17541–17556. doi: 10.1109/JIOT.2021.3081983.
    [11]
    LI Changxiang, WANG Hong, and SONG Rongfang. Intelligent offloading for NOMA-assisted MEC via dual connectivity[J]. IEEE Internet of Things Journal, 2021, 8(4): 2802–2813. doi: 10.1109/JIOT.2020.3020542.
    [12]
    HEYDARI J, GANAPATHY V, and SHAH M. Dynamic task offloading in multi-agent mobile edge computing networks[C]. 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013115.
    [13]
    LIU Zening, YANG Yang, WANG Kunlun, et al. Post: Parallel offloading of splittable tasks in heterogeneous fog networks[J]. IEEE Internet of Things Journal, 2020, 7(4): 3170–3183. doi: 10.1109/JIOT.2020.2965566.
    [14]
    FU Haotian, TANG Hongyao, HAO Jianye, et al. Deep multi-agent reinforcement learning with discrete-continuous hybrid action spaces[C]. The Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 2019: 2329–2335. doi: 10.24963/IJCAI.2019/323.
    [15]
    XIONG Jiechao, WANG Qing, YANG Zhouran, et al. Parametrized deep Q-networks learning: Reinforcement learning with discrete-continuous hybrid action space[EB/OL].https://arxiv.org/abs/1810.06394, 2018.
    [16]
    SALEEM U, LIU Y, JANGSHER S, et al. Latency minimization for D2D-enabled partial computation offloading in mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4472–4486. doi: 10.1109/TVT.2020.2978027.
    [17]
    MOURAD A, TOUT H, WAHAB O A, et al. Ad hoc vehicular fog enabling cooperative low-latency intrusion detection[J]. IEEE Internet of Things Journal, 2021, 8(2): 829–843. doi: 10.1109/JIOT.2020.3008488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (427) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return