Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
YANG Ningning, MENG Shiyue, WU Chaojun. Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283
Citation: YANG Ningning, MENG Shiyue, WU Chaojun. Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1138-1146. doi: 10.11999/JEIT230283

Dynamic Characteristics of Fractional-order Photosensitive Neuron and Its Coupling Synchronization

doi: 10.11999/JEIT230283
Funds:  The National Natural Science Foundation of China (51507134), The Natural Science Basic Research Program of Shaanxi Province (2021JM-449, 2018JM5068)
  • Received Date: 2023-04-17
  • Accepted Date: 2023-08-15
  • Rev Recd Date: 2023-08-02
  • Available Online: 2023-08-22
  • Publish Date: 2024-03-27
  • Neurons are the basic unit of the nervous system, and the accuracy of neuron models affects the analysis and understanding of their essential properties. In this paper, a fractional-order photosensitive FitzHugh-Nagumo (FHN) neuron circuit constructed by fractional-order capacitor and inductor is investigated. The dynamics of the fractional-order photosensitive neuron model are analyzed using bifurcation diagrams, phase portraits, and time series diagrams. It was found that the activity of the fractional-order photosensitive neuron increased as the fractional-order decreased. When different system parameters are selected, the neuron system transitions between periodic and chaotic discharge states. The system can induce different discharge modes, such as periodic discharge states, chaotic discharge states, and spike discharge states. In addition, two fractional-order photosensitive neurons were connected using electrical synaptic coupling. Phase synchronization and complete synchronization between the fractional-order photosensitive neuron systems can be achieved by adjusting the coupling strength. Finally, the modulation effect of an external light signal on neuronal excitability was verified by dSPACE.
  • loading
  • [1]
    MA Jun, SONG Xinlin, JIN Wuyin, et al. Autapse-induced synchronization in a coupled neuronal network[J]. Chaos, Solitons & Fractals, 2015, 80: 31–38. doi: 10.1016/j.chaos.2015.02.005.
    [2]
    TORRES J J, ELICES I, and MARRO J. Efficient transmission of subthreshold signals in complex networks of spiking neurons[J]. PLoS One, 2015, 10(3): e0121156. doi: 10.1371/journal.pone.0121156.
    [3]
    BELYKH I, DE LANGE E, and HASLER M. Synchronization of bursting neurons: What matters in the network topology[J]. Physical Review Letters, 2005, 94(18): 188101. doi: 10.1103/PhysRevLett.94.188101.
    [4]
    WIG G S, SCHLAGGAR B L, and PETERSEN S E. Concepts and principles in the analysis of brain networks[J]. Annals of the New York Academy of Sciences, 2011, 1224(1): 126–146. doi: 10.1111/j.1749-6632.2010.05947.x.
    [5]
    IZHIKEVICH E M. Which model to use for cortical spiking neurons?[J]. IEEE Transactions on Neural Networks, 2004, 15(5): 1063–1070. doi: 10.1109/TNN.2004.832719.
    [6]
    OZER M and EKMEKCI N H. Effect of channel noise on the time-course of recovery from inactivation of sodium channels[J]. Physics Letters A, 2005, 338(2): 150–154. doi: 10.1016/j.physleta.2005.02.039.
    [7]
    HODGKIN A L and HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of Physiology, 1952, 117(4): 500–544. doi: 10.1113/jphysiol.1952.sp004764.
    [8]
    FITZHUGH R. Impulses and physiological states in theoretical models of nerve membrane[J]. Biophysical Journal, 1961, 1(6): 445–466. doi: 10.1016/S0006-3495(61)86902-6.
    [9]
    HINDMARSH J L and ROSE R M. A model of neuronal bursting using three coupled first order differential equations[J]. Proceedings of the Royal Society B:Biological Sciences, 1984, 221(1222): 87–102. doi: 10.1098/rspb.1984.0024.
    [10]
    IZHIKEVICH E M. Simple model of spiking neurons[J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569–1572. doi: 10.1109/TNN.2003.820440.
    [11]
    马军. 功能神经元建模及动力学若干问题[J]. 广西师范大学学报:自然科学版, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.

    MA Jun. Dynamics and model approach for functional neurons[J]. Journal of Guangxi Normal University:Natural Science Edition, 2022, 40(5): 307–323. doi: 10.16088/j.issn.1001-6600.2021122301.
    [12]
    LIU Yong, XU Wanjiang, MA Jun, et al. A new photosensitive neuron model and its dynamics[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1387–1396. doi: 10.1631/FITEE.1900606.
    [13]
    YAO Zhao, SUN Kehui, and HE Shaobo. Firing patterns in a fractional-order FithzHugh–Nagumo neuron model[J]. Nonlinear Dynamics, 2022, 110(2): 1807–1822. doi: 10.1007/s11071-022-07690-2.
    [14]
    YANG Xin and ZHANG Guangjun. The synchronization behaviors of memristive synapse-coupled fractional-order neuronal networks[J]. IEEE Access, 2021, 9: 131844–131857. doi: 10.1109/ACCESS.2021.3115149.
    [15]
    ABDELATY A M, FOUDA M E, and ELTAWIL A M. On numerical approximations of fractional-order spiking neuron models[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 105: 106078. doi: 10.1016/j.cnsns.2021.106078.
    [16]
    谢盈, 朱志刚, 张晓锋, 等. 光电流驱动下非线性神经元电路的放电模式控制[J]. 物理学报, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.

    XIE Ying, ZHU Zhigang, ZHANG Xiaofeng, et al. Control of firing mode in nonlinear neuron circuit driven by photocurrent[J]. Acta Physica Sinica, 2021, 70(21): 210502. doi: 10.7498/aps.70.20210676.
    [17]
    WESTERLUND S and EKSTAM L. Capacitor theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 826–839. doi: 10.1109/94.326654.
    [18]
    OLDHAM K B and SPANIER J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order[M]. Amsterdam: Elsevier, 1974.
    [19]
    GAO Guanghua, SUN Zhizhong, and ZHANG Hongwei. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications[J]. Journal of Computational Physics, 2014, 259: 33–50. doi: 10.1016/j.jcp.2013.11.017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views (524) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return