Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HAN Yan, LIN Zhichao, HUANG Qingqing, XIANG Min, WEN Rui, ZHANG Yan. A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274
Citation: HAN Yan, LIN Zhichao, HUANG Qingqing, XIANG Min, WEN Rui, ZHANG Yan. A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1043-1050. doi: 10.11999/JEIT230274

A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions

doi: 10.11999/JEIT230274
Funds:  National Key Research and Development Program of China (2022YFE0114300), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202100612), Chongqing Postdoctoral Science Foundation (cstc2021jcyj-bshX0094)
  • Received Date: 2023-04-17
  • Rev Recd Date: 2023-07-14
  • Available Online: 2023-07-21
  • Publish Date: 2024-03-27
  • To address the problems that blurred decision boundaries and low identifiability of features in the rolling bearing Remaining Useful Life (RUL) prediction under cross working conditions, a domain adaptive method with Maximum Classifier Discrepancy network with Orthogonal Constraints (MCD_OC) is proposed. Firstly, the fast Fourier transform is applied to transform the raw vibration signal into the frequency domain signal and input it to the model. Then, Convolutional Neural Network (CNN) and Gate Recurrent Unit (GRU) are used to extract the depth spatiotemporal features of the bearing signal, the source and target domain feature is aligned using the maximum classifier discrepancy, and the orthogonal constraint is applied to constrain target domain features to increase the identifiability between features of unlabeled target domain feature. Finally, comparative experiments are conducted on the prediction of cross working condition RUL predict based on the bearing life dataset to evaluate the method in this work, and the optimal results are obtained in multiple experiments.
  • loading
  • [1]
    YAO Siya, KANG Qi, ZHOU Mengchu, et al. A survey of transfer learning for machinery diagnostics and prognostics[J]. Artificial Intelligence Review, 2023, 56(4): 2871–2922. doi: 10.1007/s10462-022-10230-4.
    [2]
    王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.

    WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics &Information Technology, 2014, 36(3): 595–600. doi: 10.3724/SP.J.1146.2013.00434.
    [3]
    邵海东, 颜深, 肖一鸣, 等. 时变转速下基于改进图注意力网络的轴承半监督故障诊断[J]. 电子与信息学报, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.

    SHAO Haidong, YAN Shen, XIAO Yiming, et al. Semi-supervised bearing fault diagnosis using improved graph attention network under time-varying speeds[J]. Journal of Electronics &Information Technology, 2023, 45(5): 1550–1558. doi: 10.11999/JEIT220303.
    [4]
    王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动、测试与诊断, 2021, 41(3): 439–446. doi: 10.16450/j.cnki.issn.1004-6801.2021.03.003.

    WANG Yujing, LI Shaopeng, KANG Shouqiang, et al. Method of predicting remaining useful life of rolling bearing combining CNN and LSTM[J]. Journal of Vibration,Measurement &Diagnosis, 2021, 41(3): 439–446. doi: 10.16450/j.cnki.issn.1004-6801.2021.03.003.
    [5]
    YANG Chuangyan, MA Jun, WANG Xiaodong, et al. A novel based-performance degradation indicator RUL prediction model and its application in rolling bearing[J]. ISA Transactions, 2022, 121: 349–364. doi: 10.1016/j.isatra.2021.03.045.
    [6]
    DING Ning, LI Hulin, YIN Zhongwei, et al. Journal bearing seizure degradation assessment and remaining useful life prediction based on long short-term memory neural network[J]. Measurement, 2020, 166: 108215. doi: 10.1016/j.measurement.2020.108215.
    [7]
    王新刚, 韩凯忠, 王超, 等. 基于迁移学习的轴承剩余使用寿命预测方法[J]. 东北大学学报:自然科学版, 2021, 42(5): 665–672. doi: 10.12068/j.issn.1005-3026.2021.05.009.

    WANG Xingang, HAN Kaizhong, WANG Chao, et al. Bearing remaining useful life prediction method based on transfer learning[J]. Journal of Northeastern University:Natural Science, 2021, 42(5): 665–672. doi: 10.12068/j.issn.1005-3026.2021.05.009.
    [8]
    雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1–8. doi: 10.3901/JME.2019.07.001.

    LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1–8. doi: 10.3901/JME.2019.07.001.
    [9]
    CHENG Han, KONG Xianguang, CHEN Gaige, et al. Transferable convolutional neural network based remaining useful life prediction of bearing under multiple failure behaviors[J]. Measurement, 2021, 168: 108286. doi: 10.1016/j.measurement.2020.108286.
    [10]
    HU Tao, GUO Yiming, GU Liudong, et al. Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method[J]. Reliability Engineering & System Safety, 2022, 219: 108265. doi: 10.1016/j.ress.2021.108265.
    [11]
    CHENG Han, KONG Xianguang, WANG Qibin, et al. The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data[J]. Reliability Engineering & System Safety, 2022, 225: 108581. doi: 10.1016/j.ress.2022.108581.
    [12]
    ZOU Yisheng, LI Zhixuan, LIU Yongzhi, et al. A method for predicting the remaining useful life of rolling bearings under different working conditions based on multi-domain adversarial networks[J]. Measurement, 2022, 188: 110393. doi: 10.1016/j.measurement.2021.110393.
    [13]
    SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3723–3732.
    [14]
    BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351.
    [15]
    NECTOUX P, GOURIVEAU R, MEDJAHER K, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests[C]. The IEEE International Conference on Prognostics and Health Management, Denver, USA, 2012: 1–8.
    [16]
    TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: Maximizing for domain invariance[J]. arXiv preprint arXiv: 1412.3474, 2014.
    [17]
    GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [18]
    SUN Baochen and SAENKO K. Deep CORAL: Correlation alignment for deep domain adaptation[C]. The European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 443–450.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (228) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return