| Citation: | SUN Hui, SHI Yulong, ZHANG Jianyi, WANG Rui, WANG Yuyue. Weakly Supervised Object Real-time Detection Based on High-resolution Class Activation Mapping Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1051-1059. doi: 10.11999/JEIT230268 | 
 
	                | [1] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 1137–1149. | 
| [2] | LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[C]. 14th European Conference on Computer Vision. Amsterdam, The Netherlands, Springer, 2016: 21–37. | 
| [3] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. | 
| [4] | REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 6517–6525. | 
| [5] | REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL].https://arxiv.org/abs/1804.02767, 2018. | 
| [6] | BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL].https://arxiv.org/abs/2004.10934, 2020. | 
| [7] | 王蕊, 史玉龙, 孙辉, 等. 基于轻量化的高分辨率鸟群识别深度学习网络[J]. 华中科技大学学报(自然科学版), 2023, 51(5): 81–87. doi:  10.13245/j.hust.230513. WANG Rui, SHI Yulong, SUN Hui, et al. Lightweight-based high resolution bird flocking recognition deep learning network[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2023, 51(5): 81–87. doi:  10.13245/j.hust.230513. | 
| [8] | 王蕊, 李金洺, 史玉龙, 等. 基于视觉的机场无人驱鸟车路径规划算法[J/OL]. https://doi.org/10.13700/j.bh.1001-5965.2022.0717, 2022. WANG Rui, LI Jinming, SHI Yulong, et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J/OL]. https://doi.org/10.13700/j.bh.1001-5965.2022.0717, 2022. | 
| [9] | CARBONNEAU M A, CHEPLYGINA V, GRANGER E, et al. Multiple instance learning: A survey of problem characteristics and applications[J]. Pattern Recognition, 2018, 77: 329–53. doi:  10.1016/j.patcog.2017.10.009. | 
| [10] | 程帅, 孙俊喜, 曹永刚, 等. 多示例深度学习目标跟踪[J]. 电子与信息学报, 2015, 37(12): 2906–2912. doi:  10.11999/JEIT150319. CHENG Shuai, SUN Junxi, CAO Yonggang, et al. Target tracking based on multiple instance deep learning[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2906–2912. doi:  10.11999/JEIT150319. | 
| [11] | 罗艳, 项俊, 严明君, 等. 基于多示例学习和随机蕨丛检测的在线目标跟踪[J]. 电子与信息学报, 2014, 36(7): 1605–1611. doi:  10.3724/SP.J.1146.2013.01358. LUO Yan, XIANG Jun, YAN Mingjun, et al. Online target tracking based on mulitiple instance learning and random ferns detection[J]. Journal of Electronics &Information Technology, 2014, 36(7): 1605–1611. doi:  10.3724/SP.J.1146.2013.01358. | 
| [12] | XIE Jinheng, LUO Cheng, ZHU Xiangping, et al. Online refinement of low-level feature based activation map for weakly supervised object localization[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 132–141. | 
| [13] | MENG Meng, ZHANG Tianzhu, TIAN Qi, et al. Foreground activation maps for weakly supervised object localization[C]. The 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3365–3375. | 
| [14] | 孙辉, 史玉龙, 王蕊. 基于对比层级相关性传播的由粗到细的类激活映射算法研究[J]. 电子与信息学报, 2023, 45(4): 1454–1463. doi:  10.11999/JEIT220113. SUN Hui, SHI Yulong, and WANG Rui. Study of coarse-to-fine class activation mapping algorithms based on contrastive layer-wise relevance propagation[J]. Journal of Electronics &Information Technology, 2023, 45(4): 1454–1463. doi:  10.11999/JEIT220113. | 
| [15] | IBRAHEM H, SALEM A D A, and KANG H S. Real-time weakly supervised object detection using center-of-features localization[J]. IEEE Access, 2021, 9: 38742–38756. doi:  10.1109/ACCESS.2021.3064372. | 
| [16] | BOLEI Z, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[EB/OL]. https://arxiv.org/abs/1412.6856, 2014. | 
| [17] | ZHOU Bolei, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921–2929. | 
| [18] | ZHANG Xiaolin, WEI Yunchao, FENG Jiashi, et al. Adversarial complementary learning for weakly supervised object localization[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1325–1334. | 
| [19] | CHOE J and SHIM H. Attention-based dropout layer for weakly supervised object localization[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2219–2228. | 
| [20] | XUE Haolan, LIU Chang, WAN Fang, et al. DANet: Divergent activation for weakly supervised object localization[C]. The 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6588–6597. | 
| [21] | ZHANG Xiaolin, WEI Yunchao, and YANG Yi. Inter-image communication for weakly supervised localization[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 271–287. | 
| [22] | MAI Jinjie, YANG Meng, and LUO Wenfeng. Erasing integrated learning: A simple yet effective approach for weakly supervised object localization[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8763–8772. | 
| [23] | LU Weizeng, JIA Xi, XIE Weicheng, et al. Geometry constrained weakly supervised object localization[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 481–496. | 
| [24] | ZHANG Chenlin, CAO Yunhao, and WU Jianxin. Rethinking the route towards weakly supervised object localization[C]. The 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13457–13466. | 
| [25] | PAN Xingjia, GAO Yingguo, LIN Zhiwen, et al. Unveiling the potential of structure preserving for weakly supervised object localization[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11637–11646. | 
| [26] | GU Jindong, YANG Yinchong, and TRESP V. Understanding individual decisions of CNNs via contrastive backpropagation[C]. 14th Asian Conference on Computer Vision, Perth, Australia, 2018: 119–134. | 
| [27] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. | 
| [28] | SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556, 2014. | 
| [29] | 柳毅, 徐焕然, 袁红, 等. 天津滨海国际机场鸟类群落结构及多样性特征[J]. 生态学杂志, 2017, 36(3): 740–746. doi:  10.13292/j.1000-4890.201703.029. LIU Yi, XU Huanran, YUAN Hong, et al. Bird community structure and diversity at Tianjin Binhai International Airport[J]. Chinese Journal of Ecology, 2017, 36(3): 740–746. doi:  10.13292/j.1000-4890.201703.029. | 
| [30] | WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200–2011 dataset[R]. Pasadena: California Institute of Technology, 2011. | 
| [31] | GUO Guangyu, HAN Junwei, WAN Fang, et al. Strengthen learning tolerance for weakly supervised object localization[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 7399–7408. | 
| [32] | BABAR S and DAS S. Where to look?: Mining complementary image regions for weakly supervised object localization[C]. The 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2021: 1010–1019. | 
