Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LAN Chaofeng, JIANG Pengwei, CHEN Huan, ZHAO Shilong, GUO Xiaoxia, HAN Yulan, HAN Chuang. Multi-Head Attention Time Domain Audiovisual Speech Separation Based on Dual-Path Recurrent Network and Conv-TasNet[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1005-1012. doi: 10.11999/JEIT230260
Citation: LAN Chaofeng, JIANG Pengwei, CHEN Huan, ZHAO Shilong, GUO Xiaoxia, HAN Yulan, HAN Chuang. Multi-Head Attention Time Domain Audiovisual Speech Separation Based on Dual-Path Recurrent Network and Conv-TasNet[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1005-1012. doi: 10.11999/JEIT230260

Multi-Head Attention Time Domain Audiovisual Speech Separation Based on Dual-Path Recurrent Network and Conv-TasNet

doi: 10.11999/JEIT230260
Funds:  The National Natural Science Foundation of China (11804068), Natural Science Foundation of Heilongjiang Province (LH2020F033)
  • Received Date: 2023-04-12
  • Rev Recd Date: 2023-09-05
  • Available Online: 2023-09-08
  • Publish Date: 2024-03-27
  • The current audiovisual speech separation model is essentially the simple splicing of video and audio features without fully considering the interrelationship of each modality, resulting in the underutilization of visual information and unsatisfactory separation effects. The article adequately considers the interconnection between visual features and audio features, adopts a multi-headed attention mechanism, and combines the Convolutional Time-domain audio separation Network (Conv-TasNet) and Dual-Path Recurrent Neural Network (DPRNN), the Multi-Head Attention Time Domain AudioVisual Speech Separation (MHATD-AVSS) model is proposed. The audio encoder and the visual encoder are used to obtain the audio features and the lip features of the video, and the multi-head attention mechanism is used to cross-modality fuse the audio features with the visual features to obtain the audiovisual fusion features, which are passed through the DPRNN separation network to obtain the separated speech of different speakers. The Perceptual Evaluation of Speech Quality (PESQ), Short-Time Objective Intelligibility (STOI), and Signal-to-Noise Ratio (SNR) evaluation metrics are used for experimental testing in the VoxCeleb2 dataset. The research shows that when separating the mixed speech of two, three, or four speakers, the SDR improvement of the method in this paper is above 1.87 dB and up to 2.29 dB compared with the traditional separation network. In summary, this article shows that the method can consider the phase information of the audio signal, better use the correlation between visual information and audio information, extract more accurate audio and video characteristics, and obtain better separation effects.
  • loading
  • [1]
    SUN Peng, WU Dongping, and LIU Chaoran. High-sensitivity tactile sensor based on Ti2C-PDMS sponge for wireless human–computer interaction[J]. Nanotechnology, 2021, 32(29): 295506. doi: 10.1088/1361-6528/ABF59E.
    [2]
    CHERRY E C. Some experiments on the recognition of speech, with one and with two ears[J]. The Journal of the Acoustical Society of America, 1953, 25(5): 975–979. doi: 10.1121/1.1907229.
    [3]
    LUTFI R A, RODRIGUEZ B, and LEE J. Effect of listeners versus experimental factors in multi-talker speech segregation[J]. The Journal of the Acoustical Society of America, 2021, 149(S4): A105. doi: 10.1121/10.0004656.
    [4]
    COMON P. Independent component analysis, a new concept?[J]. Signal Processing, 1994, 36(3): 287–314. doi: 10.1016/0165-1684(94)90029-9.
    [5]
    LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788–791. doi: 10.1038/44565.
    [6]
    PARSONS T W. Separation of speech from interfering speech by means of harmonic selection[J]. The Journal of the Acoustical Society of America, 1976, 60(4): 911–918. doi: 10.1121/1.381172.
    [7]
    HERSHEY J R, CHEN Zhuo, LE ROUX J, et al. Deep clustering: Discriminative embeddings for segmentation and separation[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 31–35.
    [8]
    YU Dong, KOLBÆK M, TAN Zhenghua, et al. Permutation invariant training of deep models for speaker-independent multi-talker speech separation[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 241–245.
    [9]
    KOLBæK M, YU Dong, TAN Zhenghua, et al. Multitalker speech separation with utterance-level permutation invariant training of deep recurrent neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(10): 1901–1913. doi: 10.1109/TASLP.2017.2726762.
    [10]
    WAGEMANS J, FELDMAN J, GEPSHTEIN S, et al. A century of gestalt psychology in visual perception: II. Conceptual and theoretical foundations[J]. Psychological Bulletin, 2012, 138(6): 1218–1252. doi: 10.1037/a0029334.
    [11]
    GOLUMBIC E Z, COGAN G B, SCHROEDER C E, et al. Visual input enhances selective speech envelope tracking in auditory cortex at a "cocktail party"[J]. The Journal of Neuroscience, 2013, 33(4): 1417–1426. doi: 10.1523/JNEUROSCI.3675-12.2013.
    [12]
    TAO Ruijie, PAN Zexu, DAS R K, et al. Is someone speaking?: Exploring long-term temporal features for audio-visual active speaker detection[C]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 3927–3935.
    [13]
    LAKHAN A, MOHAMMED M A, KADRY S, et al. Federated learning-aware multi-objective modeling and blockchain-enable system for IIoT applications[J]. Computers and Electrical Engineering, 2022, 100: 107839. doi: 10.1016/j.compeleceng.2022.107839.
    [14]
    MORGADO, LI Yi, and VASCONCELOS N. Learning representations from audio-visual spatial alignment[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 397.
    [15]
    FLEMING J T, MADDOX R K, and SHINN-CUNNINGHAM B G. Spatial alignment between faces and voices improves selective attention to audio-visual speech[J]. The Journal of the Acoustical Society of America, 2021, 150(4): 3085–3100. doi: 10.1121/10.0006415.
    [16]
    LUO Yi and MESGARANI N. TaSNet: Time-domain audio separation network for real-time, single-channel speech separation[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 696–700.
    [17]
    LUO Yi and MESGARANI N. Conv-TasNet: Surpassing ideal time–frequency magnitude masking for speech separation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(8): 1256–1266. doi: 10.1109/TASLP.2019.2915167.
    [18]
    LUO Yi, CHEN Zhuo, and YOSHIOKA T. Dual-path RNN: Efficient long sequence modeling for time-domain single-channel speech separation[C]. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020: 46–50.
    [19]
    WU Jian, XU Yong, ZHANG Shixiong, et al. Time domain audio visual speech separation[C]. 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Singapore, 2019: 667–673.
    [20]
    范存航, 刘斌, 陶建华, 等. 一种基于卷积神经网络的端到端语音分离方法[J]. 信号处理, 2019, 35(4): 542–548. doi: 10.16798/j.issn.1003-0530.2019.04.003.

    FAN Cunhang, LIU Bin, TAO Jianhua, et al. An end-to-end speech separation method based on convolutional neural network[J]. Journal of Signal Processing, 2019, 35(4): 542–548. doi: 10.16798/j.issn.1003-0530.2019.04.003.
    [21]
    徐亮, 王晶, 杨文镜, 等. 基于Conv-TasNet的多特征融合音视频联合语音分离算法[J]. 信号处理, 2021, 37(10): 1799–1805. doi: 10.16798/j.issn.1003-0530.2021.10.002.

    XU Liang, WANG Jing, YANG Wenjing, et al. Multi feature fusion audio-visual joint speech separation algorithm based on Conv-TasNet[J]. Journal of Signal Processing, 2021, 37(10): 1799–1805. doi: 10.16798/j.issn.1003-0530.2021.10.002.
    [22]
    GAO Ruohan and GRAUMAN K. VisualVoice: Audio-visual speech separation with cross-modal consistency[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 15490–15500.
    [23]
    XIONG Junwen, ZHANG Peng, XIE Lei, et al. Audio-visual speech separation based on joint feature representation with cross-modal attention[J]. arvix: 2203.02655, 2022.
    [24]
    ZHANG Peng, XU Jiaming, SUI Jing, et al. Audio-visual speech separation with adversarially disentangled visual representation[J]. arXiv: 2011.14334, 2020.
    [25]
    WU Yifei, LI Chenda, BAI Jinfeng, et al. Time-domain audio-visual speech separation on low quality videos[C]. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 256–260.
    [26]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [27]
    CHUNG J S, NAGRANI A, and ZISSERMAN A. VoxCeleb2: Deep speaker recognition[C]. Interspeech 2018, 19th Annual Conference of the International Speech Communication Association, Hyderabad, India, 2018: 1086–1090.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (607) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return