Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
WANG Xiaomin, LEI Xiao, ZHANG Yadong. Combined Positioning of High-Speed Train Based on Improved Adaptive IMM Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(3): 817-825. doi: 10.11999/JEIT230251
Citation: WANG Xiaomin, LEI Xiao, ZHANG Yadong. Combined Positioning of High-Speed Train Based on Improved Adaptive IMM Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(3): 817-825. doi: 10.11999/JEIT230251

Combined Positioning of High-Speed Train Based on Improved Adaptive IMM Algorithm

doi: 10.11999/JEIT230251
Funds:  The Science and Technology Research and Development Program of China National Railway Group Corporation (P2021G053, N2021T008, N2021G045, N2022G010), Shanghai Aerospace Science and Technology Innovation Fund funded projects (SAST2020-126)
  • Received Date: 2023-04-11
  • Accepted Date: 2023-08-21
  • Rev Recd Date: 2023-08-21
  • Available Online: 2023-08-24
  • Publish Date: 2024-03-27
  • A high accuracy combined positioning method for high-speed trains based on the Improved Adaptive Interacting Multiple Model (IMM) is proposed for the high-precision positioning problem of trains. Firstly, a combined positioning scheme of four sensors, namely, satellite receiver, wheel speed sensor, speed radar and single-axis gyroscope, is designed according to the train positioning requirements and the characteristics of each sensor. Next, to address the issue that the IMM fusion filtering algorithm has improper fixed parameter settings due to inaccurate a priori information, the Sage-Husa adaptive filtering and the Transition Probability Matrix (TPM) adaptive update set are introduced to become the adaptive IMM algorithm. To solve the lag problem of multi-model switching, the likelihood function value is set as the judgment flag by using the feature that sub-model likelihood function value can quickly respond to the model change trend, and the judgment window is introduced to correct the TPM matrix elements, which effectively improves the model switching speed. Finally, based on the improved adaptive IMM algorithm, the fusion filtering of four sensor positioning information is carried out to realize the high-precision combined positioning of high-speed trains. Simulation results show that the enhanced algorithm improves the positioning accuracy by 1.6%~14.7% compared with other adaptive IMM algorithms, and it can effectively reduce the peak positional error by increasing the switching speed between models, and it also has a better anti-noise performance.
  • loading
  • [1]
    OTEGUI J, BAHILLO A, LOPETEGI I, et al. A survey of train positioning solutions[J]. IEEE Sensors Journal, 2017, 17(20): 6788–6797. doi: 10.1109/jsen.2017.2747137.
    [2]
    MARAIS J, BEUGIN J, and BERBINEAU M. A survey of GNSS-based research and developments for the European railway signaling[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2602–2618. doi: 10.1109/tits.2017.2658179.
    [3]
    蔡煊, 陶汉卿, 侯宇婷, 等. 北斗卫星导航系统在列车定位中的应用研究与发展[J]. 铁道科学与工程学报, 2022, 19(8): 2417–2427. doi: 10.19713/j.cnki.43-1423/u.t20211086.

    CAI Xuan, TAO Hanqing, HOU Yuting, et al. Application research and development of Beidou navigation satellite system in train positioning[J]. Journal of Railway Science and Engineering, 2022, 19(8): 2417–2427. doi: 10.19713/j.cnki.43-1423/u.t20211086.
    [4]
    JIANG Wei, CHEN Sirui, CAI Baigen, et al. A multi-sensor positioning method-based train localization system for Low Density Line[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10425–10437. doi: 10.1109/TVT.2018.2869157.
    [5]
    莫志松, 安鸿飞. 新型列控系统列车综合自主定位技术研究[J]. 铁道学报, 2022, 44(1): 56–64. doi: 10.3969/j.issn.1001-8360.2022.01.008.

    MO Zhisong and AN Hongfei. Research on comprehensive autonomous positioning technology of new train control system[J]. Journal of the China Railway Society, 2022, 44(1): 56–64. doi: 10.3969/j.issn.1001-8360.2022.01.008.
    [6]
    KIM K, KONG S H, and JEON S Y. Slip and slide detection and adaptive information sharing algorithms for high-speed train navigation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3193–3203. doi: 10.1109/TITS.2015.2437899.
    [7]
    MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 103–123. doi: 10.1109/7.640267.
    [8]
    ZENG Yuan, LU Wenbin, YU Bo, et al. Improved IMM algorithm based on support vector regression for UAV tracking[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 867–876. doi: 10.23919/JSEE.2022.000075.
    [9]
    曾浩, 母王强, 杨顺平. 高机动目标跟踪ATPM-IMM算法[J]. 通信学报, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135.

    ZENG Hao, MU Wangqiang, and YANG Shunping. High maneuvering target tracking ATPM-IMM algorithm[J]. Journal on Communications, 2022, 43(7): 93–101. doi: 10.11959/j.issn.1000-436x.2022135.
    [10]
    彭滔, 张亚, 李世中. 基于航向角辅助的IMM-CKF雷达/红外跟踪算法[J]. 探测与控制学报, 2022, 44(2): 48–53. doi: 10.11812/j.issn.1008-1194.2022.2.tcykzxb202202009.

    PENG Tao, ZHANG Ya, and LI Shizhong. IMM-CKF Radar/IR tracking algorithm based on course angle aids[J]. Journal of Detection &Control, 2022, 44(2): 48–53. doi: 10.11812/j.issn.1008-1194.2022.2.tcykzxb202202009.
    [11]
    YAO Yiqing, XU Xiaosu, YANG Dongrui, et al. An IMM-UKF aided SINS/USBL calibration solution for underwater vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3740–3747. doi: 10.1109/TVT.2020.2972526.
    [12]
    高学泽, 魏文军. 马尔可夫参数自适应IMM算法在列车定位中的应用[J]. 传感器与微系统, 2019, 38(1): 155–157,160. doi: 10.13873/J.1000-9787(2019)01-0155-03.

    GAO Xueze and WEI Wenjun. Application of Markov parameter adaptive IMM algorithm in train positioning[J]. Transducer and Microsystem Technologies, 2019, 38(1): 155–157,160. doi: 10.13873/J.1000-9787(2019)01-0155-03.
    [13]
    戴定成, 姚敏立, 蔡宗平, 等. 改进的马尔可夫参数自适应IMM算法[J]. 电子学报, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024.

    DAI Dingcheng, YAO Minli, CAI Zongping, et al. Improved adaptive Markov IMM algorithm[J]. Acta Electronica Sinica, 2017, 45(5): 1198–1205. doi: 10.3969/j.issn.0372-2112.2017.05.024.
    [14]
    叶瑾, 许枫, 杨娟, 等. 一种改进的时变转移概率AIMM跟踪算法[J]. 应用声学, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011.

    YE Jin, XU Feng, YANG Juan, et al. An improved AIMM tracking algorithm based on adaptive transition probability[J]. Journal of Applied Acoustics, 2020, 39(2): 246–252. doi: 10.11684/j.issn.1000-310X.2020.02.011.
    [15]
    王平波, 刘杨. 基于改进自适应IMM-UKF算法的水下目标跟踪[J]. 电子与信息学报, 2022, 44(6): 1999–2005. doi: 10.11999/JEIT211128.

    WANG Pingbo and LIU Yang. Underwater target tracking algorithm based on improved adaptive IMM-UKF[J]. Journal of Electronics &Information Technology, 2022, 44(6): 1999–2005. doi: 10.11999/JEIT211128.
    [16]
    邓雯琪, 黄景春, 康灿, 等. 基于交互式多模型滤波算法机车车速估计[J]. 传感器与微系统, 2022, 41(7): 122–125. doi: 10.13873/J.1000-9787(2022)07-0122-04.

    DENG Wenqi, HUANG Jingchun, KANG Can, et al. Locomotive speed estimation based on interactive multi-model filtering algorithm[J]. Transducer and Microsystem Technologies, 2022, 41(7): 122–125. doi: 10.13873/J.1000-9787(2022)07-0122-04.
    [17]
    XU Shuqing, ZHOU Haiyin, WANG Jiongqi, et al. SINS/CNS/GNSS integrated navigation based on an improved federated Sage–Husa adaptive filter[J]. Sensors, 2019, 19(17): 3812. doi: 10.3390/s19173812.
    [18]
    李飞, 段哲民, 龚诚, 等. GNSS接收机自主完好性监测算法研究[J]. 测绘通报, 2007(8): 14–15. doi: 10.3969/j.issn.0494-0911.2007.08.005.

    LI Fei, DUAN Zhemin, GONG Cheng, et al. Research on RAIM Algorithm of GNSS[J]. Bulletin of Surveying and Mapping, 2007(8): 14–15. doi: 10.3969/j.issn.0494-0911.2007.08.005.
    [19]
    杨栋, 王思明, 许建玉. CRH3型动车组牵引制动模式曲线的算法研究[J]. 城市轨道交通研究, 2013, 16(12): 94–98. doi: 10.16037/j.1007-869x.2013.12.025.

    YANG Dong, WANG Siming, and XU Jianyu. On algorithm of traction and braking mode curve for CRH3 multiple unit[J]. Urban Mass Transit, 2013, 16(12): 94–98. doi: 10.16037/j.1007-869x.2013.12.025.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (522) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return