Citation: | ZHUO Li, ZHANG Lei, JIA Tongyao, LI Xiaoguang, ZHANG Hui. Few Shot Domain Adaptation Tongue Color Classification in Traditional Chinese Medicine via Two-stage Meta-learning[J]. Journal of Electronics & Information Technology, 2024, 46(3): 986-994. doi: 10.11999/JEIT230249 |
[1] |
孙亮亮. 有噪声标注下的中医舌色分类研究[D]. [硕士论文], 北京工业大学, 2022.
SUN Liangliang. Research on the classification of TCM tongue color under noisy labeling[D]. [Master dissertation], Beijing University of Technology, 2022.
|
[2] |
HOU Jun, SU Hongyi, YAN Bo, et al. Classification of tongue color based on CNN[C]. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 2017: 725–729.
|
[3] |
FU Shengyu, ZHENG Hong, YANG Zijiang, et al. Computerized tongue coating nature diagnosis using convolutional neural network[C]. 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA), Beijing, China, 2017: 730–734.
|
[4] |
QU Panling, ZHANG Hui, ZHUO Li, et al. Automatic analysis of tongue substance color and coating color using sparse representation-based classifier[C]. 2016 International Conference on Progress in Informatics and Computing (PIC), Shanghai, China, 2016: 289–294.
|
[5] |
LI Yanping, ZHUO Li, SUN Lianglian, et al. Tongue color classification in TCM with noisy labels via confident-learning-assisted knowledge distillation[J]. Chinese Journal of Electronics, 2023, 32(1): 140–150. doi: 10.23919/cje.2022.00.040.
|
[6] |
卓力, 孙亮亮, 张辉, 等. 有噪声标注情况下的中医舌色分类方法[J]. 电子与信息学报, 2022, 44(1): 89–98. doi: 10.11999/JEIT210935.
ZHUO Li, SUN Liangliang, ZHANG Hui, et al. TCM tongue color classification method under noisy labeling[J]. Journal of Electronics &Information Technology, 2022, 44(1): 89–98. doi: 10.11999/JEIT210935.
|
[7] |
GRETTON A, SMOLA A, HUANG Jiayuan, et al. Covariate shift by kernel mean matching[M]. QUIÑONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, et al. Dataset Shift in Machine Learning. Cambridge: The MIT Press, 2008: 131–160.
|
[8] |
GOPALAN R, LI Ruonan, and CHELLAPPA R. Domain adaptation for object recognition: An unsupervised approach[C]. 2011 International Conference on Computer Vision, Barcelona, Spain, 2011: 999–1006.
|
[9] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281.
|
[10] |
JHUO I H, LIU Dong, LEE D T, et al. Robust visual domain adaptation with low-rank reconstruction[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 2168–2175.
|
[11] |
GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel method for the two-sample-problem[C]. The 19th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2006: 513–520.
|
[12] |
SUN Baochen, FENG Jianshi, and SAENKO K. Correlation alignment for unsupervised domain adaptation[M]. CSURKA G. Domain Adaptation in Computer Vision Applications. Cham: Springer, 2017: 153–171.
|
[13] |
KULLBACK S and LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79–86. doi: 10.1214/aoms/1177729694.
|
[14] |
KANG Guoliang, JIANG Lu, YANG Yi, et al. Contrastive adaptation network for unsupervised domain adaptation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Los Angeles, USA, 2019: 4888–4897.
|
[15] |
GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. The 28th International Conference on International Conference on Machine Learning, Bellevue, USA, 2011: 513–520.
|
[16] |
GANIN Y and LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 1180–1189.
|
[17] |
ZHANG Xu, YU F X, CHANG S F, et al. Deep transfer network: Unsupervised domain adaptation[EB/OL]. https://arxiv.org/abs/1503.00591, 2015.
|
[18] |
SAITO K, KIM D, SCLAROFF S, et al. Semi-supervised domain adaptation via minimax entropy[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 8049–8057.
|
[19] |
PÉREZ-CARRASCO M, PROTOPAPAS P, and CABRERA-VIVES G. Con2DA: Simplifying semi-supervised domain adaptation by learning consistent and contrastive feature representations[C]. 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia, 2021: 1558–1569. doi: 10.48550/arXiv.2204.01558
|
[20] |
LI Jichang, LI Guanbin, SHI Yemin, et al. Cross-domain adaptive clustering for semi-supervised domain adaptation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2505–2514.
|
[21] |
BERTHELOT D, ROELOFS R, SOHN K, et al. AdaMatch: A unified approach to semi-supervised learning and domain adaptation[C]. The Tenth International Conference on Learning Representations, 2022: 4732–4782.
|
[22] |
MISHRA N, ROHANINEJAD M, CHEN Xi, et al. A Simple neural attentive meta-learner[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 3141–3158.
|
[23] |
XU Zhixiong, CHEN Xiliang, TANG Wei, et al. Meta weight learning via model-agnostic meta-learning[J]. Neurocomputing, 2021, 432: 124–132. doi: 10.1016/j.neucom.2020.08.034.
|
[24] |
WANG Yisen, MA Xingjun, CHEN Zaiyi, et al. Symmetric cross entropy for robust learning with noisy labels[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 322–330.
|
[25] |
YI Li, LIU Sheng, SHE Qi, et al. On learning contrastive representations for learning with noisy labels[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 16661–16670.
|
[26] |
VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637–3645. doi: 10.48550/arXiv.1606.04080
|
[27] |
SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208.
|
[28] |
FINN C, RAJESWARAN A, KAKADE S, et al. Online meta-learning[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 1920–1930.
|