| Citation: | WANG Zhenduo, TAN Zhengfeng, SUN Rongchen. Orthogonal Time Sequency Multiplexing Waveform Framework Based on Multi-dimensional Extension and Its Performance Analysis[J]. Journal of Electronics & Information Technology, 2024, 46(3): 826-834. doi: 10.11999/JEIT230248 | 
 
	                | [1] | LIU An, HUANG Zhe, LI Min, et al. A survey on fundamental limits of integrated sensing and communication[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 994–1034. doi:  10.1109/COMST.2022.3149272. | 
| [2] | HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. | 
| [3] | RAVITEJA P, HONG Yi, VITERBO E, et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 957–961. doi:  10.1109/TVT.2018.2878891. | 
| [4] | WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi:  10.1109/MWC.001.2000408. | 
| [5] | WANG Zhenduo, LIU Zhipeng, SUN Zhiguo, et al. BER performance analysis of OTFS systems with power allocation[J]. China Communications, 2023, 20(1): 24–35. doi:  10.23919/JCC.2023.01.003. | 
| [6] | ZOU Tingting, XU Wenjun, GAO Hui, et al. Low-complexity linear equalization for OTFS systems with rectangular waveforms[C]. 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, Canada, 2021: 1–6. | 
| [7] | 蒋占军, 刘庆达, 张鈜, 等. 高速移动通信系统中OTFS分数多普勒信道估计加窗研究[J]. 电子与信息学报, 2022, 44(2): 646–653. doi:  10.11999/JEIT210561. JIANG Zhanjun, LIU Qingda, ZHANG Hong, et al. Study on OTFS fractional Doppler channel estimation and windowing in high-speed mobile communication systems[J]. Journal of Electronics &Information Technology, 2022, 44(2): 646–653. doi:  10.11999/JEIT210561. | 
| [8] | 蒋占军, 刘庆达. 高速移动通信系统中OTFS信道估计算法研究[J]. 电子与信息学报, 2021, 43(10): 2878–2885. doi:  10.11999/JEIT200683. JIANG Zhanjun and LIU Qingda. Study on OTFS channel estimation algorithms in high-speed mobile communication systems[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2878–2885. doi:  10.11999/JEIT200683. | 
| [9] | WANG Zhenduo, CHEN Xingyu, SUN Zhiguo, et al. On the performance of nonlinear corrective active constellation expansion in OTFS systems[J]. IEEE Communications Letters, 2022, 26(6): 1418–1422. doi:  10.1109/LCOMM.2022.3165191. | 
| [10] | QU Huiyang, LIU Guanghui, ZHANG Lei, et al. Low-complexity symbol detection and interference cancellation for OTFS system[J]. IEEE Transactions on Communications, 2021, 69(3): 1524–1537. doi:  10.1109/TCOMM.2020.3043007. | 
| [11] | THAJ T, VITERBO E, and HONG Yi. Orthogonal time sequency multiplexing modulation: Analysis and low-complexity receiver design[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7842–7855. doi:  10.1109/TWC.2021.3088479. | 
| [12] | 李国军, 龙锟, 叶昌荣, 等. 高速移动环境下低复杂度OTSM迭代rake均衡方法[J]. 通信学报, 2022, 43(10): 86–93. doi:  10.11959/j.issn.1000-436x.2022203. LI Guojun, LONG Kun, YE Changrong, et al. Iterative rake equalization method for low-complexity OTSM in high-speed mobile environment[J]. Journal on Communications, 2022, 43(10): 86–93. doi:  10.11959/j.issn.1000-436x.2022203. | 
| [13] | 李国军, 龙锟, 叶昌荣, 等. 高速移动环境下OTSM迭代检测算法研究[J]. 电子与信息学报, 2023, 45(6): 2098–2104. doi:  10.11999/JEIT220541. LI Guojun, LONG Kun, YE Changrong, et al. Research on OTSM iterative detection algorithm in high-speed mobile environment[J]. Journal of Electronics &Information Technology, 2023, 45(6): 2098–2104. doi:  10.11999/JEIT220541. | 
| [14] | MEI Lin, SHA Xuejun, and ZHANG Naitong. The approach to carrier scheme convergence based on 4-weighted fractional Fourier transform[J]. IEEE Communications Letters, 2010, 14(6): 503–505. doi:  10.1109/LCOMM.2010.06.092413. | 
| [15] | MEI Lin, XIAO Jiang, FANG Xiaojie, et al. Hybrid carrier and STBC based impulsive noise suppression for substation communications[C]. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, Canada, 2020: 1–5. | 
| [16] | MEI Lin, FANG Xiaojie, LIN Xu, et al. A WFRFT-based cyclic prefix-free hybrid-carrier FDE scheme[C]. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020: 1–6. | 
| [17] | WANG Zhenduo, CHEN Xingyu, and NING Xiaoyan. BER analysis of integrated WFRFT-OTFS waveform framework over static multipath channels[J]. IEEE Communications Letters, 2021, 25(3): 754–758. doi:  10.1109/LCOMM.2020.3040822. | 
| [18] | MALLAIAH R and MANI V V. A novel OTFS system based on DFrFT-OFDM[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1156–1160. doi:  10.1109/LWC.2022.3159534. | 
| [19] | LIN Xu, MEI Lin, LABEAU F, et al. Efficient fast-convolution based hybrid carrier system[J]. IEEE Transactions on Wireless Communications, 2022, 21(5): 3508–3522. doi:  10.1109/TWC.2021.3122880. | 
| [20] | VAN LOAN C F. The ubiquitous Kronecker product[J]. Journal of Computational and Applied Mathematics, 2000, 123(1/2): 85–100. doi:  10.1016/S0377-0427(00)00393-9. | 
| [21] | THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi:  10.1109/TVT.2020.3044276. | 
