Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
ZHOU Chenhao, WEN Liyuan, QIAN Hua, KANG Kai. 1-bit Precoding Algorithm for Massive MIMO OFDM Downlink Systems with Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(3): 886-894. doi: 10.11999/JEIT230239
Citation: ZHOU Chenhao, WEN Liyuan, QIAN Hua, KANG Kai. 1-bit Precoding Algorithm for Massive MIMO OFDM Downlink Systems with Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(3): 886-894. doi: 10.11999/JEIT230239

1-bit Precoding Algorithm for Massive MIMO OFDM Downlink Systems with Deep Learning

doi: 10.11999/JEIT230239
Funds:  The National Key Research and Development Program of China (2020YFB2205603),The National Natural Science Foundation of China (61971286)
  • Received Date: 2023-07-18
  • Rev Recd Date: 2023-10-23
  • Available Online: 2023-10-27
  • Publish Date: 2024-03-27
  • The base station of a massive Multiple-Input Multiple-Output (MIMO) system is equipped with hundreds of antennas, enhancing the spectral efficiency of the system and increasing the system costs. To address this problem, our research group proposed a Convergence-Guaranteed Multi-Carrier one-bit precoding (CG-MC1bit) iterative algorithm suitable for Orthogonal Frequency-Division Multiplexing (OFDM) downlink massive MIMO systems, which can ensure superior system performance. However, the corresponding computational complexity is high, hindering the practical application of the algorithm in real-time systems. To address this issue, we propose a model-driven, unfolding neural network, which is based on the CG-MC1bit iterative algorithm and introduces trainable parameters to replace high-complexity operations in forward propagation. In particular, we unfold the iterative algorithm into a neural network and introduce trainable parameters to replace high-complexity operations in forward propagation. Simulation results reveal that this method can automatically update parameters. In addition, compared with the traditional precoding algorithms, the proposed method has a higher convergence speed and lower computational complexity.
  • loading
  • [1]
    BJÖRNSON E, SANGUINETTI L, HOYDIS J, et al. Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer?[J]. IEEE Transactions on Wireless Communications, 2015, 14(6): 3059–3075. doi: 10.1109/TWC.2015.2400437.
    [2]
    LU Lu, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/jstsp.2014.2317671.
    [3]
    RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: Opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/msp.2011.2178495.
    [4]
    SAXENA A K, FIJALKOW I, MEZGHANI A, et al. Analysis of one-bit quantized ZF precoding for the multiuser massive MIMO downlink[C]. 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2016: 758–762. doi: 10.1109/ACSSC.2016.7869148.
    [5]
    SWINDLEHURST A L, SAXENA K A, MEZGHANI A, et al. Minimum probability-of-error perturbation precoding for the one-bit massive MIMO downlink[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 6483–6487. doi: 10.1109/ICASSP.2017.7953405.
    [6]
    CHU Lei, WEN Fei, LI L, et al. Efficient nonlinear precoding for massive MIMO downlink systems with 1-bit DACs[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4213–4224. doi: 10.1109/TWC.2019.2920125.
    [7]
    CHEN Zhenhui, WANG Yajun, LIAN Zhuxian, et al. Low-complexity constant envelope precoding with one-bit DAC for massive MU-MIMO systems[J]. IEEE Wireless Communications Letters, 2021, 10(12): 2805–2809. doi: 10.1109/LWC.2021.3118202.
    [8]
    HAQIQATNEJAD A, KAYHAN F, SHAHBAZPANAHI S, et al. Finite-alphabet symbol-level multiuser precoding for massive MU-MIMO downlink[J]. IEEE Transactions on Signal Processing, 2021, 69: 5595–5610. doi: 10.1109/TSP.2021.3113803.
    [9]
    JACOBSSON S, CASTAÑEDA O, JEON C, et al. Nonlinear precoding for phase-quantized constant-envelope massive MU-MIMO-OFDM[C]. 2018 25th International Conference on Telecommunications (ICT), Saint-Malo, France, 2018: 367–372. doi: 10.1109/ICT.2018.8464896.
    [10]
    TSINOS C G, DOMOUCHTSIDIS S, CHATZINOTAS S, et al. Symbol level precoding with low resolution DACs for constant envelope OFDM MU-MIMO systems[J]. IEEE Access, 2020, 8: 12856–12866. doi: 10.1109/ACCESS.2019.2963857.
    [11]
    WEN Liyuan, QIAN Hua, HU Yunbo, et al. One-bit Downlink precoding for massive MIMO OFDM system[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 5914–5926. doi: 10.1109/TWC.2023.3238380.
    [12]
    ZHANG Shangwei, LIU Jiajia, RODRIGUES T K, et al. Deep learning techniques for advancing 6G communications in the physical layer[J]. IEEE Wireless Communications, 2021, 28(5): 141–147. doi: 10.1109/MWC.001.2000516.
    [13]
    LIU Zhenyu, DEL ROSARIO M, and DING Zhi. A Markovian model-driven deep learning framework for massive MIMO CSI feedback[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1214–1228. doi: 10.1109/TWC.2021.3103120.
    [14]
    ZHANG Xinliang and VAEZI Mojtaba. Multi-objective DNN-based precoder for MIMO communications[J]. IEEE Transactions on Communications, 2021, 69(7): 4476–4488. doi: 10.1109/TCOMM.2021.3071536.
    [15]
    HE Hengtao, ZHANG Mengjiao, JIN Shi, et al. Model-driven deep learning for massive MU-MIMO with finite-alphabet precoding[J]. IEEE Communications Letters, 2020, 24(10): 2216–2220. doi: 10.1109/LCOMM.2020.3002082.
    [16]
    BALATSOUKAS-STIMMING A, CASTAÑEDA O, JACOBSSON S, et al. Neural-network optimized 1-bit precoding for massive MU-MIMO[C]. 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2019: 1–5. doi: 10.1109/SPAWC.2019.8815519.
    [17]
    HU Qiyu, CAI Yunlong, SHI Qingjiang, et al. Iterative algorithm induced deep-unfolding neural networks: Precoding design for multiuser MIMO systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(2): 1394–1410. doi: 10.1109/TWC.2020.3033334.
    [18]
    蒋伊琳, 尹子茹, 宋宇. 基于卷积神经网络的低截获概率雷达信号检测算法[J]. 电子与信息学报, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.

    JIANG Yilin, YIN Ziru, and SONG Yu. Low probability of intercept radar signal detection algorithm based on convolutional neural networks[J]. Journal of Electronics & Information Technology, 2022, 44(2): 718–725. doi: 10.11999/JEIT210132.
    [19]
    ZHANG Kai, VAN GOOL L, and TIMOFTE R. Deep unfolding network for image super-resolution[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 3214–3223. doi: 10.1109/CVPR42600.2020.00328.
    [20]
    SAMUEL N, DISKIN T, and WIESEL A. Deep MIMO detection[C]. 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 2017: 1–5. doi: 10.1109/SPAWC.2017.8227772.
    [21]
    HUBARA I, COURBARIAUX M, SOUDRY D, et al. Binarized neural networks[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, USA, 2016: 4114–4122.
    [22]
    QIN Haotong, GONG Ruihao, LIU Xianglong, et al. Forward and backward information retention for accurate binary neural networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 2247–2256. doi: 10.1109/CVPR42600.2020.00232.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (498) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return