Advanced Search
Volume 46 Issue 6
Jun.  2024
Turn off MathJax
Article Contents
LIU Rui, GUO Kefeng, ZHU Shibing, LI Changqing, LI Keying. Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212
Citation: LIU Rui, GUO Kefeng, ZHU Shibing, LI Changqing, LI Keying. Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA[J]. Journal of Electronics & Information Technology, 2024, 46(6): 2488-2496. doi: 10.11999/JEIT230212

Performance Analysis of Satellite-Aerial-Terrestrial Multiple Primary Users Cognitive Networks Based on NOMA

doi: 10.11999/JEIT230212
Funds:  The National Natural Science Foundation of China (6201517)
  • Received Date: 2023-04-03
  • Rev Recd Date: 2023-07-03
  • Available Online: 2023-07-14
  • Publish Date: 2024-06-30
  • Due to its unique advantages of strong survivability and seamless coverage, Satellite Communication (SatCom) can make up for the shortcomings of ground communication such as terrain limitations and small coverage, and has become increasingly important in current and future communication systems. In addition, aerial-assisted communication is considered as a valuable research direction due to its flexibility and scalability in satellite ground networks. To overcome the problems of spectrum shortage and low spectrum utilization in Integrated Satellite-Aerial-Terrestrial Network (ISATN), Cognitive Radio (CR) and Non-Orthogonal Multiple Access (NOMA) are used in wireless communication networks to improve spectrum utilization and transmission performance. In this regard, the performance of an NOMA-based Cognitive Integrated Satellite-Aerial-Terrestrial Network(CISATN) with multiple primary users is studied, and accurate expressions for Outage Probability (OP) and ergodic capacity of the primary and secondary networks are derived. Asymptotic expressions for the OP and diversity order of these two networks are provided to obtain further insights. Finally, the correctness of the theoretical derivation is verified through numerical simulation, and the impact of key variables on system indicators is analyzed.
  • loading
  • [1]
    GUO Kefeng, LIU Rui, DONG Chao, et al. Ergodic capacity of NOMA-based overlay cognitive integrated satellite-UAV-terrestrial networks[J]. Chinese Journal of Electronics, 2023, 32(2): 273–282. doi: 10.23919/cje.2021.00.316.
    [2]
    LIU Rui, GUO Kefeng, AN Kang, et al. Resource allocation for NOMA-enabled cognitive satellite-UAV-terrestrial networks with imperfect CSI[J]. IEEE Transactions on Cognitive Communications and Networking.
    [3]
    GUO Kefeng, AN Kang, ZHANG Bangning, et al. Physical layer security for multiuser satellite communication systems with threshold-based scheduling scheme[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 5129–5141. doi: 10.1109/TVT.2020.2979496.
    [4]
    DONG Chao, SHEN Yun, QU Yuben, et al. UAVs as an intelligent service: Boosting edge intelligence for air-ground integrated networks[J]. IEEE Network, 2021, 35(4): 167–175. doi: 10.1109/MNET.011.2000651.
    [5]
    CHEN Jiaxin, WU Qihui, XU Yuhua, et al. Spectrum allocation for task-driven UAV communication networks exploiting game theory[J]. IEEE Wireless Communications, 2021, 28(4): 174–181. doi: 10.1109/MWC.001.2000444.
    [6]
    LI Xingwang, WANG Qunshu, LIU Yuanwei, et al. UAV-aided multi-way NOMA networks with residual hardware impairments[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1538–1542. doi: 10.1109/LWC.2020.2996782.
    [7]
    WU Qihui, DING Guoru, XU Yuhua, et al. Cognitive internet of things: A new paradigm beyond connection[J]. IEEE Internet of Things Journal, 2014, 1(2): 129–143. doi: 10.1109/JIOT.2014.2311513.
    [8]
    CHEN Jiaxin, CHEN Ping, WU Qihui, et al. A game-theoretic perspective on resource management for large-scale UAV communication networks[J]. China Communications, 2021, 18(1): 70–87. doi: 10.23919/JCC.2021.01.007.
    [9]
    ZHOU Feng, LI Xingwang, ALAZAB Mamoun, et al. Secrecy performance for RIS-based integrated satellite vehicle networks with a UAV relay and MRC eavesdropping[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1676–1685. doi: 10.1109/TIV.2022.3225466.
    [10]
    LIN Zhi, LIN Min, CHAMPAGNE B, et al. Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks[J]. IEEE Transactions on Communications, 2021, 69(9): 6345–6360. doi: 10.1109/TCOMM.2021.3088898.
    [11]
    LIN Zhi, LIN Min, ZHU Weiping, et al. Robust secure beamforming for wireless powered cognitive satellite-terrestrial networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(2): 567–580. doi: 10.1109/TCCN.2020.3016096.
    [12]
    GUO Kefeng, AN Kang, ZHANG Bangning, et al. On the performance of the uplink satellite multiterrestrial relay networks with hardware impairments and interference[J]. IEEE Systems Journal, 2019, 13(3): 2297–2308. doi: 10.1109/JSYST.2019.2901800.
    [13]
    林志, 林敏, 黄清泉, 等. 能效最大化准则下的星地融合网络的安全波束成形算法[J]. 电子学报, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.

    LIN Zhi, LIN Min, HUANG Qingquan, et al. Secure beamforming algorithm in satellite-terrestrial integrated networks with energy efficiency maximization criterion[J]. Acta Electronica Sinica, 2022, 50(1): 124–134. doi: 10.12263/DZXB.20200944.
    [14]
    BANKEY V and UPADHYAY P K. Physical layer security of multiuser multirelay hybrid satellite-terrestrial relay networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2488–2501. doi: 10.1109/TVT.2019.2893366.
    [15]
    GUO Kefeng, LIN Min, ZHANG Bangning, et al. On the performance of LMS communication with hardware impairments and interference[J]. IEEE Transactions on Communications, 2019, 67(2): 1490–1505. doi: 10.1109/TCOMM.2018.2878848.
    [16]
    HUANG Qingquan, LIN Min, ZHU Weiping, et al. Performance analysis of integrated satellite-terrestrial multiantenna relay networks with multiuser scheduling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2718–2731. doi: 10.1109/TAES.2019.2952698.
    [17]
    XIAO Zhenyu, ZHU Lipeng, and XIA Xianggen. UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges[J]. China Communications, 2020, 17(9): 147–166. doi: 10.23919/JCC.2020.09.012.
    [18]
    HUANG Qingquan, LIN Min, WANG Junbo, et al. Energy efficient beamforming schemes for satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2020, 68(6): 3863–3875. doi: 10.1109/TCOMM.2020.2978044.
    [19]
    LIN Zhi, LIN Min, DE COLA T, et al. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks[J]. IEEE Internet of Things Journal, 2021, 8(14): 11123–11134. doi: 10.1109/JIOT.2021.3051603.
    [20]
    ZHANG Xiaokai, ZHANG Bangning, AN Kang, et al. Stochastic geometry-based analysis of cache-enabled hybrid satellite-aerial-terrestrial networks with non-orthogonal multiple access[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1272–1287. doi: 10.1109/TWC.2021.3103499.
    [21]
    HUANG Qingquan, LIN Min, ZHU Weiping, et al. Uplink massive access in mixed RF/FSO satellite-aerial-terrestrial networks[J]. IEEE Transactions on Communications, 2021, 69(4): 2413–2426. doi: 10.1109/TCOMM.2021.3049364.
    [22]
    RUAN Yuhan, LI Yongzhao, WANG Chen-Xiang, et al. Energy efficient adaptive transmissions in integrated satellite-terrestrial networks with SER constraints[J]. IEEE Transactions on Wireless Communications, 2018, 17(1): 210–222. doi: 10.1109/TWC.2017.2764472.
    [23]
    RUAN Yuhan, LI Yongzhao, WANG Chengxiang, et al. Power allocation in cognitive satellite-vehicular networks from energy-spectral efficiency tradeoff perspective[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 318–329. doi: 10.1109/TCCN.2019.2905199.
    [24]
    AN Kang, OUYANG Jian, LIN Min, et al. Outage analysis of multi-antenna cognitive hybrid satellite-terrestrial relay networks with beamforming[J]. IEEE Communications Letters, 2015, 19(7): 1157–1160. doi: 10.1109/LCOMM.2015.2428256.
    [25]
    SHARMA P K, UPADHYAY P K, DA COSTA D B, et al. Performance analysis of overlay spectrum sharing in hybrid satellite-terrestrial systems with secondary network selection[J]. IEEE Transactions on Wireless Communications, 2017, 16(10): 6586–6601. doi: 10.1109/TWC.2017.2725950.
    [26]
    LIN Min, LIN Zhi, ZHU Weiping, et al. Joint beamforming for secure communication in cognitive satellite terrestrial networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1017–1029. doi: 10.1109/JSAC.2018.2832819.
    [27]
    SHUAI Haifeng, GUO Kefeng, AN Kang, et al. Joint impacts of non-ideal system limitations on the performance of NOMA-based SatCom networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 4091–4096. doi: 10.1109/TVT.2022.3221071.
    [28]
    JIA Min, GAO Qiling, GUO Qing, et al. Power multiplexing NOMA and bandwidth compression for satellite-terrestrial networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11107–11117. doi: 10.1109/TVT.2019.2944077.
    [29]
    LIN Zhi, LIN Min, WANG Junbo, et al. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 13(3): 657–670. doi: 10.1109/JSTSP.2019.2899731.
    [30]
    YAN Xiaojuan, XIAO Hailin, AN Kang, et al. Ergodic capacity of NOMA-based uplink satellite networks with randomly deployed users[J]. IEEE Systems Journal, 2020, 14(3): 3343–3350. doi: 10.1109/JSYST.2019.2934358.
    [31]
    GUO Kefeng, AN Kang, ZHOU Feng, et al. On the secrecy performance of NOMA-based integrated satellite multiple-terrestrial relay networks with hardware impairments[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3661–3676. doi: 10.1109/TVT.2021.3068062.
    [32]
    LIU Rui, GUO Kefeng, AN Kang, et al. NOMA-based integrated satellite-terrestrial relay networks under spectrum sharing environment[J]. IEEE Wireless Communications Letters, 2021, 10(6): 1266–1270. doi: 10.1109/LWC.2021.3063759.
    [33]
    LIU Rui, GUO Kefeng, AN Kang, et al. NOMA-based overlay cognitive integrated satellite-terrestrial relay networks with secondary network selection[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2187–2192. doi: 10.1109/TVT.2021.3122029.
    [34]
    MIRIDAKIS N I, VERGADOS D D, and MICHALAS A. Dual-hop communication over a satellite relay and Shadowed Rician channels[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9): 4031–4040. doi: 10.1109/TVT.2014.2361832.
    [35]
    The mathematical functions site[EB/OL]. http://functions.wolfram.com, 2023.
    [36]
    JEFFREY A and ZWILLINGER D. Table of Integrals, Series, and Products[M]. 7th ed. Amsterdam: Elsevier, 2007: 340.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (238) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return