Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
HAO Rui, WANG Jianping, CHEN Danyang, LU Huimin. Routing Optimization of Ultra Violet Light Communication Unmanned Aerial Vehicle Formation Based on JAYA Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(3): 848-857. doi: 10.11999/JEIT230206
Citation: HAO Rui, WANG Jianping, CHEN Danyang, LU Huimin. Routing Optimization of Ultra Violet Light Communication Unmanned Aerial Vehicle Formation Based on JAYA Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(3): 848-857. doi: 10.11999/JEIT230206

Routing Optimization of Ultra Violet Light Communication Unmanned Aerial Vehicle Formation Based on JAYA Algorithm

doi: 10.11999/JEIT230206
Funds:  Guangdong Province Basic and Applied Basic Research Fund Project Regional Joint Fund Key Project (2021B1515120086), Beijing University of Science and Technology Youth Teacher Interdisciplinary Research Project (Central University Basic Research Business Fee Special Fund) (FRF-IDRY-21-019)
  • Received Date: 2023-03-29
  • Rev Recd Date: 2023-12-22
  • Available Online: 2023-12-28
  • Publish Date: 2024-03-27
  • Due to its high flexibility, good safety and all-weather work, ultraviolet light communication is considered to be a potential communication solution for the emergency communication Unmanned Aerial Vehicle (UAV) formation. Based on the Low Energy Adaptive Clustering Hierarchy (LEACH) algorithm, and combined with JAYA intelligent optimization algorithm, a novel routing optimization algorithm Rcomp JAYA LEACH (RJLEACH) is proposed to improve the effective operation time of the ultraviolet light communication UAV formation. The algorithm is applied to optimize the formation routing of ultraviolet light communication UAVs with different structures, and the results obtained by other algorithms are compared and analyzed. The results show that RJLEACH algorithm reduces the residual energy variance between UAV nodes in the cluster head election stage, and the search for the optimal route reduces the energy consumption of inter-cluster communication. Finally, the time of the first node’s death and half nodes’ death in the network are prolonged by 31.8% and 13.8%, respectively compared with the classic LEACH algorithm, and the energy utilization rate is significantly improved, which can gain valuable time for tasks such as disaster relief and emergency communication.
  • loading
  • [1]
    BUPE P, HADDAD R, and RIOS-GUTIERREZ F. Relief and emergency communication network based on an autonomous decentralized UAV clustering network[C]. The SoutheastCon 2015, Fort Lauderdale, USA, 2015: 1–8. doi: 10.1109/SECON.2015.7133027.
    [2]
    张宏宏, 甘旭升, 李双峰, 等. 复杂低空环境下考虑区域风险评估的无人机航路规划[J]. 仪器仪表学报, 2021, 42(1): 257–266. doi: 10.19650/j.cnki.cjsi.J2007192.

    ZHANG Honghong, GAN Xusheng, LI Shuangfeng, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 257–266. doi: 10.19650/j.cnki.cjsi.J2007192.
    [3]
    ZENG Yong, ZHANG Rui, and LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36–42. doi: 10.1109/MCOM.2016.7470933.
    [4]
    方东南, 刘阔. 无人机在消防应急通信保障中的应用[J]. 电子技术, 2022, 51(7): 216–217.

    FANG Dongnan and LIU Kuo. Application of UAV in fire emergency communication support[J]. Electronic Technology, 2022, 51(7): 216–217.
    [5]
    ZHANG Tiankui, LEI Jiayi, LIU Yuanwei, et al. Trajectory optimization for UAV emergency communication with limited user equipment energy: A safe-DQN approach[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1236–1247. doi: 10.1109/TGCN.2021.3068333.
    [6]
    道格拉斯·威斯, 胡文翰. 中国大力发展无人机"蜂群”作战能力[J]. 环球军事, 2017(22): 68. doi: 10.ssss/j.issn.1009-9816.2017.22.039.

    DOUGLAS W and HU Wenhan. The rapid development of UAV swarm combat capability in China[J]. Global Military, 2017(22): 68. doi: 10.ssss/j.issn.1009-9816.2017.22.039.
    [7]
    焦士俊, 王冰切, 刘剑豪, 等. 国内外无人机蜂群研究现状综述[J]. 航天电子对抗, 2019, 35(1): 61–64. doi: 10.3969/j.issn.1673-2421.2019.01.014.

    JIAO Shijun, WANG Bingqie, LIU Jianhao, et al. Review of drone swarm research at home and abroad[J]. Aerospace Electronic Warfare, 2019, 35(1): 61–64. doi: 10.3969/j.issn.1673-2421.2019.01.014.
    [8]
    王沁飞, 南建国, 黄金科, 等. 基于加权的无人机集群组网分簇算法[J]. 计算机应用研究, 2019, 36(5): 1500–1503,1514. doi: 10.19734/j.issn.1001-3695.2017.12.0764.

    WANG Qinfei, NAN Jianguo, HUANG Jinke, et al. Weighting based clustering algorithm for FANET[J]. Application Research of Computers, 2019, 36(5): 1500–1503,1514. doi: 10.19734/j.issn.1001-3695.2017.12.0764.
    [9]
    KALAIVANAN K and BHANUMATHI V. Unmanned aerial vehicle based reliable and energy efficient data collection from red alerted area using wireless sensor networks with IoT[J]. Journal of Information Science and Engineering, 2019, 35(3): 521–536. doi: 10.6688/JISE.201905_35(3).0003.
    [10]
    MI Jinlong, WEN Xiangming, SUN Chunlei, et al. Energy-efficient and low package loss clustering in UAV-assisted WSN using Kmeans++ and fuzzy logic[C]. 2019 IEEE/CIC International Conference on Communications Workshops in China, Changchun, China, 2019: 210–215. doi: 10.1109/ICCChinaW.2019.8849956.
    [11]
    MARCUS M J. Spectrum policy challenges of UAV/drones [Spectrum Policy and Regulatory Issues][J]. IEEE Wireless Communications, 2014, 21(5): 8–9. doi: 10.1109/MWC.2014.6940426.
    [12]
    SHALABY M, SAAD W, SHOKAIR M, et al. Evaluation of electromagnetic interference in wireless broadband systems[J]. Wireless Personal Communications, 2017, 96(2): 2223–2237. doi: 10.1007/s11277-017-4294-0.
    [13]
    CHEN Guozhi, WU Tianfeng, YANG Fang, et al. Ultraviolet-based UAV swarm communications: Potentials and challenges[J]. IEEE Wireless Communications, 2022, 29(5): 84–90. doi: 10.1109/MWC.007.2100405.
    [14]
    ZENG Yong and ZHANG Rui. Energy-efficient UAV communication with trajectory optimization[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3747–3760. doi: 10.1109/TWC.2017.2688328.
    [15]
    YU Yunlong, RU Le, FANG Kun, et al. Comprehensive mobility prediction based clustering algorithm for Ad hoc UAV networks[C]. The 4th International Conference on Machinery, Materials and Computing Technology, 2016: 600–613. doi: 10.2991/icmmct-16.2016.121.
    [16]
    WU Wenliang, XIONG Naixue, and WU Chunxue. Improved clustering algorithm based on energy consumption in wireless sensor networks[J]. IET Networks, 2017, 6(3): 47–53. doi: 10.1049/iet-net.2016.0115.
    [17]
    赵太飞, 程敏花, 张港, 等. 无线紫外光协作无人机蜂群能效优化路由算法[J]. 激光与光电子学进展, 2022, 59(5): 0506005. doi: 10.3788/LOP202259.0506005.

    ZHAO Taifei, CHENG Minhua, ZHANG Gang, et al. Energy efficiency optimization routing algorithm for wireless ultraviolet cooperative UAV swarm[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0506005. doi: 10.3788/LOP202259.0506005.
    [18]
    GUNDUZ M and ASLAN M. DJAYA: A discrete Jaya algorithm for solving traveling salesman problem[J]. Applied Soft Computing, 2021, 105: 107275. doi: 10.1016/j.asoc.2021.107275.
    [19]
    LIU Chao, WANG Meng, ZENG Qian, et al. Leader-following flocking for unmanned aerial vehicle swarm with distributed topology control[J]. Science China Information Sciences, 2020, 63(4): 140312. doi: 10.1007/s11432-019- 2763-5.
    [20]
    DING Ying and TONG Shoufeng. A simplified NLOS UV communication model[C]. 2012 International Conference on Optoelectronics and Microelectronics, Changchun, China, 2012: 250–255. doi: 10.1109/ICoOM.2012.6316266.
    [21]
    XU Zhengyuan, DING Haipeng, SADLER B M, et al. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links[J]. Optics Letters, 2008, 33(16): 1860–1862. doi: 10.1364/OL.33.001860.
    [22]
    HE Qunfeng, XU Zhengyuan, and SADLER B M. Performance of short-range non-line-of-sight LED-based ultraviolet communication receivers[J]. Optics Express, 2010, 18(12): 12226–12238. doi: 10.1364/OE.18.012226.
    [23]
    CHEN Gang, XU Zhengyuan, DING Haipeng, et al. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications[J]. Optics Express, 2009, 17(5): 3929–3940. doi: 10.1364/OE.17.003929.
    [24]
    赵太飞, 许杉, 屈瑶, 等. 基于无线紫外光隐秘通信的侦察无人机蜂群分簇算法[J]. 电子与信息学报, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491.

    ZHAO Taifei, XU Shan, QU Yao, et al. Cluster-based algorithm of reconnaissance UAV swarm based on wireless ultraviolet secret communication[J]. Journal of Electronics & Information Technology, 2019, 41(4): 967–972. doi: 10.11999/JEIT180491.
    [25]
    KIRAN M S. TSA: Tree-seed algorithm for continuous optimization[J]. Expert Systems with Applications, 2015, 42(19): 6686–6698. doi: 10.1016/j.eswa.2015.04.055.
    [26]
    ROVIRA-SUGRANES A, RAZI A, AFGHAH F, et al. A review of AI-enabled routing protocols for UAV networks: Trends, challenges, and future outlook[J]. Ad Hoc Networks, 2022, 130: 102790. doi: 10.1016/j.adhoc.2022.102790.
    [27]
    李杰, 宫二玲, 孙志强, 等. 航空自组网STDMA时隙分配算法的设计与实现[J]. 航空学报, 2014, 35(12): 3371–3383. doi: 10.7527/S1000-6893.2014.0057.

    LI Jie, GONG Erling, SUN Zhiqiang, et al. Design and implementation of STDMA slot allocation algorithm for aeronautical Ad Hoc networks[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3371–3383. doi: 10.7527/S1000-6893.2014.0057.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (314) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return