Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
XIAO Song, CHEN Zhe, YANG Yatao, MA Yingjie, YANG Teng. Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203
Citation: XIAO Song, CHEN Zhe, YANG Yatao, MA Yingjie, YANG Teng. Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1128-1137. doi: 10.11999/JEIT230203

Satellite Image Encryption Algorithm Based on Chaos Theory and DNA Dynamic Coding

doi: 10.11999/JEIT230203
Funds:  The National Natural Science Foundation of China(62101414, 62201423), Beijing Municipal Natural Science Foundation (4232034), The China Postdoctoral Science Foundation (2021M702546, 2021M702548), The China Postdoctoral Science Special Foundation (2022T150508), The Young Talent Fund of Xi'an Association for Science and Technology (095920221320), The Guangdong Basic and Applied Basic Research Foundation (2020A1515110856)
  • Received Date: 2023-03-29
  • Rev Recd Date: 2023-09-12
  • Available Online: 2023-09-18
  • Publish Date: 2024-03-27
  • Considering the information security problems involved in the transmission and storage of satellite images, a new satellite image encryption algorithm based on chaos theory and DNA dynamic coding is proposed. Firstly, an improved infinite folding chaotic map is proposed, which broadens the chaotic interval of the original infinite folding chaotic map. Then, combined with the improved Chebyshev chaotic map and SHA-256 hash algorithm, the key stream of the encryption algorithm is generated to improve the plaintext sensitivity of the algorithm. Then, the state value of the chaotic system is used to encode the pixels after Hilbert local scrambling to realize DNA dynamic coding, which solves the weakness of being vulnerable to violent attacks caused by fewer DNA coding rules. Finally, the chaotic sequence is used to complete further chaotic encryption, to completely confuse the original pixel information, increase the randomness and complexity of the encryption algorithm, and obtain the ciphertext image. The experimental results show that the algorithm has a better encryption effect and the ability to deal with various attacks.
  • loading
  • [1]
    LIU Zhanqiang, WANG Licheng, WANG Xianmin, et al. Secure remote sensing image registration based on compressed sensing in cloud setting[J]. IEEE Access, 2019, 7: 36516–36526. doi: 10.1109/ACCESS.2019.2903826.
    [2]
    NAIM M, ALI PACHA A, and SERIEF C. A novel satellite image encryption algorithm based on hyperchaotic systems and Josephus problem[J]. Advances in Space Research, 2021, 67(7): 2077–2103. doi: 10.1016/j.asr.2021.01.018.
    [3]
    BENTOUTOU Y, BENSIKADDOUR E H, TALEB N, et al. An improved image encryption algorithm for satellite applications[J]. Advances in Space Research, 2020, 66(1): 176–192. doi: 10.1016/j.asr.2019.09.027.
    [4]
    CHEN Junxin, ZHU Zhiliang, FU Chong, et al. An efficient image encryption scheme using lookup table-based confusion and diffusion[J]. Nonlinear Dynamics, 2015, 81(3): 1151–1166. doi: 10.1007/s11071-015-2057-6.
    [5]
    HU Guiqiang, XIAO Di, WANG Yong, et al. Cryptanalysis of a chaotic image cipher using Latin square-based confusion and diffusion[J]. Nonlinear Dynamics, 2017, 88(2): 1305–1316. doi: 10.1007/s11071-016-3311-2.
    [6]
    MONDAL B, KUMAR P, and SINGH S. A chaotic permutation and diffusion based image encryption algorithm for secure communications[J]. Multimedia Tools and Applications, 2018, 77(23): 31177–31198. doi: 10.1007/s11042-018-6214-z.
    [7]
    LI Ming, ZHOU Kanglei, REN Hua, et al. Cryptanalysis of permutation–diffusion-based lightweight chaotic image encryption scheme using CPA[J]. Applied Sciences, 2019, 9(3): 494. doi: 10.3390/app9030494.
    [8]
    DAWAHDEH Z E, YAAKOB S N, and AZIF BIN OTHMAN R. A new image encryption technique combining elliptic curve cryptosystem with hill cipher[J]. Journal of King Saud University - Computer and Information Sciences, 2018, 30(3): 349–355. doi: 10.1016/j.jksuci.2017.06.004.
    [9]
    LONE P N, SINGH D, STOFFOVÁ V, et al. Cryptanalysis and improved image encryption scheme using elliptic curve and affine hill cipher[J]. Mathematics, 2022, 10(20): 3878. doi: 10.3390/math10203878.
    [10]
    ANDONO P N and SETIADI D R I M. Improved pixel and bit confusion-diffusion based on mixed chaos and hash operation for image encryption[J]. IEEE Access, 2022, 10: 115143–115156. doi: 10.1109/ACCESS.2022.3218886.
    [11]
    KHAIRULLAH M K, ALKAHTANI A A, BAHARUDDIN M Z B, et al. Designing 1D chaotic maps for fast chaotic image encryption[J]. Electronics, 2021, 10(17): 2116. doi: 10.3390/electronics10172116.
    [12]
    JIANG Donghua, LIU Lidong, ZHU Liya, et al. Adaptive embedding: A novel meaningful image encryption scheme based on parallel compressive sensing and slant transform[J]. Signal Processing, 2021, 188: 108220. doi: 10.1016/j.sigpro.2021.108220.
    [13]
    ZHANG Xuncai, WANG Lingfei, ZHOU Zheng, et al. A chaos-based image encryption technique utilizing Hilbert curves and H-fractals[J]. IEEE Access, 2019, 7: 74734–74746. doi: 10.1109/ACCESS.2019.2921309.
    [14]
    SUN Junwei, MA Yongxing, WANG Zicheng, et al. Dynamic analysis and cryptographic application of a 5D hyperbolic memristor-coupled neuron[J]. Nonlinear Dynamics, 2023, 111(9): 8751–8769. doi: 10.1007/s11071-023-08237-9.
    [15]
    徐锡统, 陈圣波, 于岩. 结合小波包变换与混沌神经元的遥感图像加密[J]. 遥感信息, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011.

    XU Xitong, CHEN Shengbo, and YU Yan. Remote sensing image encryption combining wavelet packet transform and chaotic neuron[J]. Remote Sensing Information, 2021, 36(4): 76–83. doi: 10.3969/j.issn.1000-3177.2021.04.011.
    [16]
    WANG Xingyuan, WANG Yu, ZHU Xiaoqiang, et al. Image encryption scheme based on chaos and DNA plane operations[J]. Multimedia Tools and Applications, 2019, 78(18): 26111–26128. doi: 10.1007/s11042-019-07794-9.
    [17]
    YILDIRIM M. DNA encoding for RGB image encryption with memristor based neuron model and chaos phenomenon[J]. Microelectronics Journal, 2020, 104: 104878. doi: 10.1016/j.mejo.2020.104878.
    [18]
    LI Xiang, WANG Leyuan, YAN Yinfa, et al. An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems[J]. Optik, 2016, 127(5): 2558–2565. doi: 10.1016/j.ijleo.2015.11.221.
    [19]
    CHAI Xiuli, CHEN Yiran, and BROYDE L. A novel chaos-based image encryption algorithm using DNA sequence operations[J]. Optics and Lasers in Engineering, 2017, 88: 197–213. doi: 10.1016/j.optlaseng.2016.08.009.
    [20]
    WANG Leimin, JIANG Shan, GE Mingfeng, et al. Finite-/fixed-time synchronization of memristor chaotic systems and image encryption application[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(12): 4957–4969. doi: 10.1109/TCSI.2021.3121555.
    [21]
    WU Jiahui, LIAO Xiaofeng, and YANG Bo. Image encryption using 2D Hénon-Sine map and DNA approach[J]. Signal Processing, 2018, 153: 11–23. doi: 10.1016/j.sigpro.2018.06.008.
    [22]
    WU Chenyang, SUN Kehui, and XIAO Yan. A hyperchaotic map with multi-elliptic cavities based on modulation and coupling[J]. The European Physical Journal Special Topics, 2021, 230(7): 2011–2020. doi: 10.1140/epjs/s11734-021-00126-9.
    [23]
    杨宣兵. 几类混沌系统特性分析、控制与图像加密应用研究[D]. [博士论文], 合肥工业大学, 2020.

    YANG Xuanbing. Characteristics analysis and control of several chaotic systems and their application in image encryption[D]. [Ph. D. dissertation], Hefei University of Technology, 2020.
    [24]
    FAN Shengwen, LI Kai, ZHANG Ying, et al. A hybrid chaotic encryption scheme for wireless body area networks[J]. IEEE Access, 2020, 8: 183411–183429. doi: 10.1109/ACCESS.2020.3029263.
    [25]
    蒋东华, 朱礼亚, 沈子懿, 等. 结合二维压缩感知和混沌映射的双图像视觉安全加密算法[J]. 西安交通大学学报, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015.

    JIANG Donghua, ZHU Liya, SHEN Ziyi, et al. A double image visual security encryption algorithm combining 2D compressive sensing and chaotic mapping[J]. Journal of Xi'an Jiaotong University, 2022, 56(2): 139–148. doi: 10.7652/xjtuxb202202015.
    [26]
    孙克辉, 贺少波, 何毅, 等. 混沌伪随机序列的谱熵复杂性分析[J]. 物理学报, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501.

    SUN Kehui, HE Shaobo, HE Yi, et al. Complexity analysis of chaotic pseudo-random sequences based on spectral entropy algorithm[J]. Acta Physica Sinica, 2013, 62(1): 010501. doi: 10.7498/aps.62.010501.
    [27]
    ABBASI A A, MAZINANI M, and HOSSEINI R. Chaotic evolutionary-based image encryption using RNA codons and amino acid truth table[J]. Optics & Laser Technology, 2020, 132: 106465. doi: 10.1016/j.optlastec.2020.106465.
    [28]
    MAHMUD M, ATTA-UR-RAHMAN, LEE M, et al. Evolutionary-based image encryption using RNA codons truth table[J]. Optics & Laser Technology, 2020, 121: 105818. doi: 10.1016/j.optlastec.2019.105818.
    [29]
    CAO Chun, SUN Kehui, and LIU Wenhao. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map[J]. Signal Processing, 2018, 143: 122–133. doi: 10.1016/j.sigpro.2017.08.020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (521) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return