Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
SONG Xiuli, LI Chuang. Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193
Citation: SONG Xiuli, LI Chuang. Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1109-1118. doi: 10.11999/JEIT230193

Dynamic Quantum Secret Sharing Scheme Based on Nonlocal Orthogonal Product States

doi: 10.11999/JEIT230193
Funds:  The National Natural Science Foundation of China (62376047), Henan Key Laboratory of Network Cryptography Technology (LNCT2022-A15), Doctor Initiation Found Project of Chongqing University of Posts and Telecommunications (A2020211), The Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX1093)
  • Received Date: 2023-03-28
  • Rev Recd Date: 2023-06-18
  • Available Online: 2023-06-26
  • Publish Date: 2024-03-27
  • Current Quantum Secret Sharing(QSS) has the drawbacks of high consumption of resource preparation and the security is not stronger. To overcome the above drawbacks, a verifiable quantum secret sharing scheme based on orthogonal product states is proposed, where multiple participants can dynamically join or leave the secret sharing. In the proposed scheme, the particle pairs of product states are divided into two sequences, the first sequence is transmitted among participants, and the previous participant performs the unitary operator to aggregate the shares on it and then transmits it to the next participant; for the other sequence, the last participant(verifier) performs the Oracle operator on the received particles. Afterward, the verifier uses global measurements on the particle pairs to obtain the quadratic residues of the secrets. Finally, learning from the idea of non-single mapping between ciphertext and plaintext in Rabin cipher, the verifier jointly with Alice verifies the correctness of the measurement results and identifies the secrets from the results. Security analysis shows that the proposed scheme can resist common external and internal attacks, and that the verification process is strongly secure. Since the nonlocal orthogonal product states are transmitted separately in two sequences, the security of the secret reconstruction process is enhanced. Performance analysis shows that the proposed scheme has low quantum resource consumption using orthogonal product state as information carriers, and extends the dimension of orthogonal product basis from low dimension to d dimension, and the number of participants can be dynamically increased or decreased, so it provides better flexibility and generality.
  • loading
  • [1]
    HILLERY M, BUŽEK V, and BERTHIAUME A. Quantum secret sharing[J]. Physical Review A, 1999, 59(3): 1829–1834. doi: 10.1103/PhysRevA.59.1829.
    [2]
    KARLSSON A, KOASHI M, and IMOTO N. Quantum entanglement for secret sharing and secret splitting[J]. Physical Review A, 1999, 59(1): 162–168. doi: 10.1103/PhysRevA.59.162.
    [3]
    杜宇韬, 鲍皖苏, 李坦. 基于秘密认证的可验证量子秘密共享协议[J]. 电子与信息学报, 2021, 43(1): 212–217. doi: 10.11999/JEIT190901.

    DU Yutao, BAO Wansu, and LI Tan. Verifiable quantum secret sharing protocol based on secret authentication[J]. Journal of Electronics &Information Technology, 2021, 43(1): 212–217. doi: 10.11999/JEIT190901.
    [4]
    BAI Chenming, ZHANG Sujuan, and LIU Lu. Verifiable quantum secret sharing scheme using d-dimensional GHZ state[J]. International Journal of Theoretical Physics, 2021, 60(10): 3993–4005. doi: 10.1007/s10773-021-04955-1.
    [5]
    HSU L Y and LI Cheming. Quantum secret sharing using product states[J]. Physical Review A, 2005, 71(2): 022321. doi: 10.1103/PhysRev.A.71.022321.
    [6]
    YANG Yuguang, WEN Qiaoyun, and ZHU Fuchen. An efficient quantum secret sharing protocol with orthogonal product states[J]. Science in China Series G:Physics, Mechanics and Astronomy, 2007, 50(3): 331–338. doi: 10.1007/s11433-007-0028-8.
    [7]
    XU Juan and YUAN Jiabing. Improvement and extension of quantum secret sharing using orthogonal product states[J]. International Journal of Quantum Information, 2014, 12(1): 1450008. doi: 10.1142/S0219749914500087.
    [8]
    BENNETT C H, DIVINCENZO D P, MOR T, et al. Unextendible product bases and bound entanglement[J]. Physical Review Letters, 1999, 82(26): 5385–5388. doi: 10.1103/PhysRevLett.82.5385.
    [9]
    WALGATE J and HARDY L. Nonlocality, asymmetry, and distinguishing bipartite states[J]. Physical Review Letters, 2002, 89(14): 147901. doi: 10.1103/PhysRevLett.89.147901.
    [10]
    ZHEN Xiaofan, FEI Shaoming, and ZUO Huijuan. Nonlocality without entanglement in general multipartite quantum systems[J]. Physical Review A, 2022, 106(6): 062432. doi: 10.1103/PhysRevA.106.062432.
    [11]
    XU Guangbao and JIANG Donghuan. Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system[J]. Quantum Information Processing, 2021, 20(4): 128. doi: 10.1007/s11128-021-03062-8.
    [12]
    JIANG Donghuan, YUAN Fei, and XU Guangbao. Novel quantum group signature scheme based on orthogonal product states[J]. Modern Physics Letters B, 2021, 35(26): 2150418. doi: 10.1142/S0217984921504182.
    [13]
    FU Sijia, ZHANG Kejia, ZHANG Long, et al. A new non-entangled quantum secret sharing protocol among different nodes in further quantum networks[J]. Frontiers in Physics, 2022, 10: 1021113. doi: 10.3389/fphy.2022.1021113.
    [14]
    HSU J L, CHONG Songkong, HWANG T, et al. Dynamic quantum secret sharing[J]. Quantum Information Processing, 2013, 12(1): 331–344. doi: 10.1007/s11128-012-0380-0.
    [15]
    WANG Tianying and LI Yanping. Cryptanalysis of dynamic quantum secret sharing[J]. Quantum Information Processing, 2013, 12(5): 1991–1997. doi: 10.1007/s11128-012-0508-2.
    [16]
    DU Yutao and BAO Wansu. Dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Chinese Physics B, 2018, 27(8): 080304. doi: 10.1088/1674-1056/27/8/080304.
    [17]
    GAO Gan, WEI Changcheng, and WANG Dong. Cryptanalysis and improvement of dynamic quantum secret sharing protocol based on two-particle transform of Bell states[J]. Quantum Information Processing, 2019, 18(6): 186. doi: 10.1007/s11128-019-2301-y.
    [18]
    LI Fulin, CHEN Tingyan, and ZHU Shixin. Dynamic (t, n) threshold quantum secret sharing based on d-dimensional Bell state[J]. Physica A:Statistical Mechanics and its Applications, 2022, 606: 128122. doi: 10.1016/j.physa.2022.128122.
    [19]
    SMALL C. A simple proof of the four-squares theorem[J]. The American Mathematical Monthly, 1982, 89(1): 59–61. doi: 10.1080/00029890.1982.11995381.
    [20]
    DE VOS A and DE BAERDEMACKER S. From reversible computation to quantum computation by Lagrange interpolation[EB/OL]. http://arXiv.org/abs/1502.00819, 2015.
    [21]
    YANG Chunwei and TSAI C W. Efficient and secure dynamic quantum secret sharing protocol based on bell states[J]. Quantum Information Processing, 2020, 19(5): 162. doi: 10.1007/s11128-020-02662-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(2)

    Article Metrics

    Article views (419) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return