Citation: | CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179 |
[1] |
陈嘉琪, 刘祥梅, 李宁, 等. 一种超分辨SAR图像水域分割算法及其应用[J]. 电子与信息学报, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.
CHEN Jiaqi, LIU Xiangmei, LI Ning, et al. A high-precision water segmentation algorithm for SAR image and its application[J]. Journal of Electronics & Information Technology, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.
|
[2] |
陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.
CHEN Shuzhen, CAO Shipeng, CUI Meiyue, et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics & Information Technology, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.
|
[3] |
何鹏浩, 余映, 徐超越. 基于动态金字塔和子空间注意力的图像超分辨率重建网络[J]. 计算机科学, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.
HE Penghao, YU Ying, and XU Chaoyue. Image super-resolution reconstruction network based on dynamic pyramid and subspace attention[J]. Computer Science, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.
|
[4] |
马子杰, 赵玺竣, 任国强, 等. 群稀疏高斯洛伦兹混合先验超分辨率重建[J]. 光电工程, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.
MA Zijie, ZHAO Xijun, REN Guoqiang, et al. Gauss-Lorenz hybrid prior super resolution reconstruction with mixed sparse representation[J]. Opto-Electronic Engineering, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.
|
[5] |
黄友文, 唐欣, 周斌. 结合双注意力和结构相似度量的图像超分辨率重建网络[J]. 液晶与显示, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
HUANG Youwen, TANG Xin, and ZHOU Bin. Image super-resolution reconstruction network with dual attention and structural similarity measure[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
|
[6] |
OOI Y K and IBRAHIM H. Deep learning algorithms for single image super-resolution: A systematic review[J]. Electronics, 2021, 10(7): 867. doi: 10.3390/ELECTRONICS10070867.
|
[7] |
CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12294–12305. doi: 10.1109/CVPR46437.2021.01212.
|
[8] |
WANG Xuan, YI Jinglei, GUO Jian, et al. A review of image super-resolution approaches based on deep learning and applications in remote sensing[J]. Remote Sensing, 2022, 14(21): 5423. doi: 10.3390/RS14215423.
|
[9] |
YANG Jianchao, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587647.
|
[10] |
程德强, 陈亮亮, 蔡迎春, 等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.
CHENG Deqiang, CHEN Liangliang, CAI Yingchun, et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.
|
[11] |
DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281.
|
[12] |
SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
|
[13] |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1132–1140. doi: 10.1109/CVPRW.2017.151.
|
[14] |
LI Juncheng, FANG Faming, MEI Kangfu, et al. Multi-scale residual network for image super-resolution[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 527–542. doi: 10.1007/978-3-030-01237-3_32.
|
[15] |
HUI Zheng, GAO Xinbo, YANG Yunchu, et al. Lightweight image super-resolution with information multi-distillation network[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 2024–2032. doi: 10.1145/3343031.3351084.
|
[16] |
程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.
CHENG Deqiang, GUO Xin, CHEN Liangliang, et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.
|
[17] |
HE Xiangyu, MO Zitao, WANG Peisong, et al. ODE-inspired network design for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1732–1741. doi: 10.1109/CVPR.2019.00183.
|
[18] |
LI Longxi, FENG Hesen, ZHENG Bing, et al. DID: A nested dense in dense structure with variable local dense blocks for super-resolution image reconstruction[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 2582–2589. doi: 10.1109/ICPR48806.2021.9413036.
|
[19] |
GAO Guangwei, WANG Zhengxue, LI Juncheng, et al. Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer[C]. The Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 913–919. doi: 10.24963/ijcai.2022/128.
|
[20] |
CHOI H, LEE J, and YANG J. N-gram in Swin transformers for efficient lightweight image super-resolution[C]. The IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2071–2081. doi: 10.1109/CVPR52729.2023.00206.
|
[21] |
HARIS M, SHAKHNAROVICH G, and UKITA N. Deep back-projection networks for super-resolution[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1664–1673. doi: 10.1109/CVPR.2018.00179.
|
[22] |
LIU Jie, ZHANG Wenjie, TANG Yuting, et al. Residual feature aggregation network for image super-resolution[C]. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2356–2365. doi: 10.1109/CVPR42600.2020.00243.
|
[23] |
DAI Tao, CAI Jianeui, ZHANG Yongbing, et al. Second-order attention network for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11057–11066. doi: 10.1109/CVPR.2019.01132.
|
[24] |
HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
|
[25] |
KIM J, LEE J K, and LEE K M. 2016. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
|
[26] |
AHN N, KANG B, and SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 256–272. doi: 10.1007/978-3-030-01249-6_16.
|
[27] |
LUO Xiaotong, XIE Yuan, ZHANG Yulun, et al. LatticeNet: Towards lightweight image super-resolution with lattice block[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 272–289. doi: 10.1007/978-3-030-58542-6_17.
|
[28] |
LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. The IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844. doi: 10.1109/ICCVW54120.2021.00210.
|
[29] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, UK, 2012: 1–10.
|
[30] |
ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730. doi: 10.1007/978-3-642-27413-8_47.
|
[31] |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. doi: 10.1109/ICCV.2001.937655.
|