Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179
Citation: CHENG Deqiang, YUAN Hang, QIAN Jiansheng, KOU Qiqi, JIANG He. Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 1033-1042. doi: 10.11999/JEIT230179

Image Super-Resolution Algorithms Based on Deep Feature Differentiation Network

doi: 10.11999/JEIT230179
Funds:  The National Natural Science Foundation of China (52204177, 52304182), The Fundamental Research Funds for the Central Universities (2020QN49)
  • Received Date: 2023-08-06
  • Accepted Date: 2023-12-18
  • Rev Recd Date: 2022-11-02
  • Available Online: 2023-12-25
  • Publish Date: 2024-03-27
  • Traditional deep neural networks usually stack deep features in a way such as skip connection, which is easy to cause information redundancy. To improve the utilization of deep feature information, a Deep Feature Differentiation Network (DFDN) is proposed and applied to single image super-resolution. First, multi-scale deep feature differentiation information is extracted and fused by Mutual-Projected Fusion Block (MPFB) to reduce the contextual information loss. Second, a differential feature attention module is proposed to further learn the differences of deep features while expanding the perception field. Third, the modules are connected in a recursive form to increase the network depth and realize feature reuse. The DIV2K dataset is used as the training dataset, and the pre-trained model is tested with four benchmark datasets, and the results are obtained by comparing the reconstructed images with popular algorithms. Extensive experiments show that the algorithm proposed in this study learns richer texture information than existing algorithms and achieves the best rankings in both subjective visualization and quantitative evaluation metrics, which again proves its robustness and superiority.
  • loading
  • [1]
    陈嘉琪, 刘祥梅, 李宁, 等. 一种超分辨SAR图像水域分割算法及其应用[J]. 电子与信息学报, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.

    CHEN Jiaqi, LIU Xiangmei, LI Ning, et al. A high-precision water segmentation algorithm for SAR image and its application[J]. Journal of Electronics & Information Technology, 2021, 43(3): 700–707. doi: 10.11999/JEIT200366.
    [2]
    陈书贞, 曹世鹏, 崔美玥, 等. 基于深度多级小波变换的图像盲去模糊算法[J]. 电子与信息学报, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.

    CHEN Shuzhen, CAO Shipeng, CUI Meiyue, et al. Image blind deblurring algorithm based on deep multi-level wavelet transform[J]. Journal of Electronics & Information Technology, 2021, 43(1): 154–161. doi: 10.11999/JEIT190947.
    [3]
    何鹏浩, 余映, 徐超越. 基于动态金字塔和子空间注意力的图像超分辨率重建网络[J]. 计算机科学, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.

    HE Penghao, YU Ying, and XU Chaoyue. Image super-resolution reconstruction network based on dynamic pyramid and subspace attention[J]. Computer Science, 2022, 49(S2): 210900202. doi: 10.11896/jsjkx.210900202.
    [4]
    马子杰, 赵玺竣, 任国强, 等. 群稀疏高斯洛伦兹混合先验超分辨率重建[J]. 光电工程, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.

    MA Zijie, ZHAO Xijun, REN Guoqiang, et al. Gauss-Lorenz hybrid prior super resolution reconstruction with mixed sparse representation[J]. Opto-Electronic Engineering, 2021, 48(11): 210299. doi: 10.12086/oee.2021.210299.
    [5]
    黄友文, 唐欣, 周斌. 结合双注意力和结构相似度量的图像超分辨率重建网络[J]. 液晶与显示, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.

    HUANG Youwen, TANG Xin, and ZHOU Bin. Image super-resolution reconstruction network with dual attention and structural similarity measure[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367–375. doi: 10.37188/CJLCD.2021-0178.
    [6]
    OOI Y K and IBRAHIM H. Deep learning algorithms for single image super-resolution: A systematic review[J]. Electronics, 2021, 10(7): 867. doi: 10.3390/ELECTRONICS10070867.
    [7]
    CHEN Hanting, WANG Yunhe, GUO Tianyu, et al. Pre-trained image processing transformer[C]. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 12294–12305. doi: 10.1109/CVPR46437.2021.01212.
    [8]
    WANG Xuan, YI Jinglei, GUO Jian, et al. A review of image super-resolution approaches based on deep learning and applications in remote sensing[J]. Remote Sensing, 2022, 14(21): 5423. doi: 10.3390/RS14215423.
    [9]
    YANG Jianchao, WRIGHT J, HUANG T, et al. Image super-resolution as sparse representation of raw image patches[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587647.
    [10]
    程德强, 陈亮亮, 蔡迎春, 等. 边缘融合的多字典超分辨率图像重建算法[J]. 煤炭学报, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.

    CHENG Deqiang, CHEN Liangliang, CAI Yingchun, et al. Image super-resolution reconstruction based on multi-dictionary and edge fusion[J]. Journal of China Coal Society, 2018, 43(7): 2084–2090. doi: 10.13225/j.cnki.jccs.2017.1263.
    [11]
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281.
    [12]
    SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    [13]
    LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1132–1140. doi: 10.1109/CVPRW.2017.151.
    [14]
    LI Juncheng, FANG Faming, MEI Kangfu, et al. Multi-scale residual network for image super-resolution[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 527–542. doi: 10.1007/978-3-030-01237-3_32.
    [15]
    HUI Zheng, GAO Xinbo, YANG Yunchu, et al. Lightweight image super-resolution with information multi-distillation network[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 2024–2032. doi: 10.1145/3343031.3351084.
    [16]
    程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J]. 中国图象图形学报, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.

    CHENG Deqiang, GUO Xin, CHEN Liangliang, et al. Image super-resolution reconstruction from multi-channel recursive residual network[J]. Journal of Image and Graphics, 2021, 26(3): 605–618. doi: 10.11834/jig.200108.
    [17]
    HE Xiangyu, MO Zitao, WANG Peisong, et al. ODE-inspired network design for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1732–1741. doi: 10.1109/CVPR.2019.00183.
    [18]
    LI Longxi, FENG Hesen, ZHENG Bing, et al. DID: A nested dense in dense structure with variable local dense blocks for super-resolution image reconstruction[C]. 2020 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 2582–2589. doi: 10.1109/ICPR48806.2021.9413036.
    [19]
    GAO Guangwei, WANG Zhengxue, LI Juncheng, et al. Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer[C]. The Thirty-First International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 913–919. doi: 10.24963/ijcai.2022/128.
    [20]
    CHOI H, LEE J, and YANG J. N-gram in Swin transformers for efficient lightweight image super-resolution[C]. The IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 2071–2081. doi: 10.1109/CVPR52729.2023.00206.
    [21]
    HARIS M, SHAKHNAROVICH G, and UKITA N. Deep back-projection networks for super-resolution[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1664–1673. doi: 10.1109/CVPR.2018.00179.
    [22]
    LIU Jie, ZHANG Wenjie, TANG Yuting, et al. Residual feature aggregation network for image super-resolution[C]. The IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 2356–2365. doi: 10.1109/CVPR42600.2020.00243.
    [23]
    DAI Tao, CAI Jianeui, ZHANG Yongbing, et al. Second-order attention network for single image super-resolution[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 11057–11066. doi: 10.1109/CVPR.2019.01132.
    [24]
    HUANG Jiabin, SINGH A, and AHUJA N. Single image super-resolution from transformed self-exemplars[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5197–5206. doi: 10.1109/CVPR.2015.7299156.
    [25]
    KIM J, LEE J K, and LEE K M. 2016. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    [26]
    AHN N, KANG B, and SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 256–272. doi: 10.1007/978-3-030-01249-6_16.
    [27]
    LUO Xiaotong, XIE Yuan, ZHANG Yulun, et al. LatticeNet: Towards lightweight image super-resolution with lattice block[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 272–289. doi: 10.1007/978-3-030-58542-6_17.
    [28]
    LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: Image restoration using swin transformer[C]. The IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 1833–1844. doi: 10.1109/ICCVW54120.2021.00210.
    [29]
    BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]. British Machine Vision Conference, Surrey, UK, 2012: 1–10.
    [30]
    ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730. doi: 10.1007/978-3-642-27413-8_47.
    [31]
    MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. doi: 10.1109/ICCV.2001.937655.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (514) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return