| Citation: | ZHAO Yaqin, SONG Yuqing, WU Han, HE Shengyang, LIU Puqiu, WU Longwen. High-precision Gesture Recognition Based on DenseNet and Convolutional Block Attention Module[J]. Journal of Electronics & Information Technology, 2024, 46(3): 967-976. doi: 10.11999/JEIT230165 | 
 
	                | [1] | VERDADERO M S, MARTINEZ-OJEDA C O, and CRUZ J C D. Hand gesture recognition system as an alternative interface for remote controlled home appliances[C]. The 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, Baguio, Philippines, 2018: 1–5. | 
| [2] | WISENER W J, RODRIGUEZ J D, OVANDO A, et al. A top-view hand gesture recognition system for IoT applications[C]. The 5th International Conference on Smart Systems and Inventive Technology, Tirunelveli, India, 2023: 430–434. | 
| [3] | KIM K M and CHOI J I. Passengers’ gesture recognition model in self-driving vehicles: Gesture recognition model of the passengers’ obstruction of the vision of the driver[C]. The 4th International Conference on Computer and Communication Systems, Singapore, 2019: 239–242. | 
| [4] | NOORUDDIN N, DEMBANI R, and MAITLO N. HGR: Hand-gesture-recognition based text input method for AR/VR wearable devices[C]. 2020 IEEE International Conference on Systems, Man, and Cybernetics, Toronto, Canada, 2020: 744–751. | 
| [5] | LIU Zhenyu, LIU Haoming, and MA Chongrun. A robust hand gesture sensing and recognition based on dual-flow fusion with FMCW radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028105. doi:  10.1109/LGRS.2022.3217390. | 
| [6] | ZHANG Wenjin, WANG Jiacun, and LAN Fangping. Dynamic hand gesture recognition based on short-term sampling neural networks[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(1): 110–120. doi:  10.1109/JAS.2020.1003465. | 
| [7] | LEÓN D G, GRÖLI J, YEDURI S R, et al. Video hand gestures recognition using depth camera and lightweight CNN[J]. IEEE Sensors Journal, 2022, 22(14): 14610–14619. doi:  10.1109/JSEN.2022.3181518. | 
| [8] | LIEN J, GILLIAN N, KARAGOZLER M E, et al. Soli: Ubiquitous gesture sensing with millimeter wave radar[J]. ACM Transactions on Graphics, 2016, 35(4): 142. doi:  10.1145/2897824.2925953. | 
| [9] | WANG Saiwen, SONG Jie, LIEN J, et al. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum[C]. The 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 2016: 851–860. | 
| [10] | SHEN Xiangyu, ZHENG Haifeng, FENG Xinxin, et al. ML-HGR-Net: A meta-learning network for FMCW radar based hand gesture recognition[J]. IEEE Sensors Journal, 2022, 22(11): 10808–10817. doi:  10.1109/JSEN.2022.3169231. | 
| [11] | ZHANG Xuhao, WU Qisong, and ZHAO Dixian. Dynamic hand gesture recognition using FMCW radar sensor for driving assistance[C]. 2018 10th International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2018: 1–6. | 
| [12] | YU J T, YEN L, and TSENG P H. mmWave radar-based hand gesture recognition using range-angle image[C]. 2020 IEEE 91st Vehicular Technology Conference, Antwerp, Belgium, 2020: 1–5. | 
| [13] | LIU Haipeng, ZHOU Anfu, DONG Zihe, et al. M-Gesture: Person-independent real-time in-air gesture recognition using commodity millimeter wave radar[J]. IEEE Internet of Things Journal, 2022, 9(5): 3397–3415. doi:  10.1109/JIOT.2021.3098338. | 
| [14] | SMITH J W, THIAGARAJAN S, WILLIS R, et al. Improved static hand gesture classification on deep convolutional neural networks using novel sterile training technique[J]. IEEE Access, 2021, 9: 10893–10902. doi:  10.1109/ACCESS.2021.3051454. | 
| [15] | GAN Liangyu, LIU Yuan, LI Yanzhong, et al. Gesture recognition system using 24 GHz FMCW radar sensor realized on real-time edge computing platform[J]. IEEE Sensors Journal, 2022, 22(9): 8904–8914. doi:  10.1109/JSEN.2022.3163449. | 
| [16] | 王勇, 吴金君, 田增山, 等. 基于FMCW雷达的多维参数手势识别算法[J]. 电子与信息学报, 2019, 41(4): 822–829. doi:  10.11999/JEIT180485. WANG Yong, WU Jinjun, TIAN Zengshan, et al. Gesture recognition with multi-dimensional parameter using FMCW radar[J]. Journal of Electronics &Information Technology, 2019, 41(4): 822–829. doi:  10.11999/JEIT180485. | 
| [17] | 王勇, 王沙沙, 田增山, 等. 基于FMCW雷达的双流融合神经网络手势识别方法[J]. 电子学报, 2019, 47(7): 1408–1415. doi:  10.3969/j.issn.0372-2112.2019.07.003. WANG Yong, WANG Shasha, TIAN Zengshan, et al. Two-stream fusion neural network approach for hand gesture recognition based on FMCW radar[J]. Acta Electronica Sinica, 2019, 47(7): 1408–1415. doi:  10.3969/j.issn.0372-2112.2019.07.003. | 
| [18] | AHMED S, KIM W, PARK J, et al. Radar-based air-writing gesture recognition using a novel multistream CNN approach[J]. IEEE Internet of Things Journal, 2022, 9(23): 23869–23880. doi:  10.1109/JIOT.2022.3189395. | 
| [19] | ALIREZAZAD K and MAURER L. FMCW radar-based hand gesture recognition using dual-stream CNN-GRU model[C]. 2022 24th International Microwave and Radar Conference, Gdansk, Poland, 2022: 1–5. | 
| [20] | PARK G, CHANDRASEGAR V K, PARK J, et al. Increasing accuracy of hand gesture recognition using convolutional neural network[C]. 2022 International Conference on Artificial Intelligence in Information and Communication, Jeju Island, Korea, Republic of, 2022: 251–255. | 
| [21] | DANG T L, NGUYEN H T, DAO D M, et al. SHAPE: A dataset for hand gesture recognition[J]. Neural Computing and Applications, 2022, 34(24): 21849–21862. doi:  10.1007/s00521-022-07651-1. | 
| [22] | WANG Lingling, CHEN Xiaoyan, XIONG Wei, et al. Research on gesture recognition and classification based on attention mechanism[C]. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference, Chongqing, China, 2022: 1617–1621. | 
| [23] | FANG Juan, XU Chao, WANG Chao, et al. Dynamic gesture recognition based on multimodal fusion model[C].  2021 20th International Conference on Ubiquitous Computing and Communications, London, United Kingdom, 2021: 172–177. | 
| [24] | GUO He, ZHANG Rui, LI Yang, et al. Research on human-vehicle gesture interaction technology based on computer visionbility[C]. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference, Beijing, China, 2022: 1161–1165. | 
| [25] | STOVE A G. Linear FMCW radar techniques[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(5): 343–350. doi:  10.1049/ip-f-2.1992.0048. | 
| [26] | WINKLER V. Range Doppler detection for automotive FMCW radars[C]. 2007 European Microwave Conference, Munich, Germany, 2007: 166–169. | 
| [27] | 夏朝阳, 周成龙, 介钧誉, 等. 基于多通道调频连续波毫米波雷达的微动手势识别[J]. 电子与信息学报, 2020, 42(1): 164–172. doi:  10.11999/JEIT190797. XIA Zhaoyang, ZHOU Chenglong, JIE Junyu, et al. Micro-motion gesture recognition based on multi-channel frequency modulated continuous wave millimeter wave radar[J]. Journal of Electronics &Information Technology, 2020, 42(1): 164–172. doi:  10.11999/JEIT190797. | 
| [28] | 樊瑞宣, 姜高霞, 王文剑. 一种个性化k近邻的离群点检测算法[J]. 小型微型计算机系统, 2020, 41(4): 752–757. doi:  10.3969/j.issn.1000-1220.2020.04.014. FAN Ruixuan, JIANG Gaoxia, and WANG Wenjian. Outlier detection algorithm with personalized k-nearest neighbor[J]. Journal of Chinese Computer Systems, 2020, 41(4): 752–757. doi:  10.3969/j.issn.1000-1220.2020.04.014. | 
| [29] | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. The European Conference on Computer Vision, Munich, Germany, 2018: 3–19. | 
| [30] | HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269. | 
