Citation: | GUO Lihua, WANG Guangfei. Few-shot Image Classification Based on Task-Aware Relation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 977-985. doi: 10.11999/JEIT230162 |
[1] |
SUNG F, YANG Fongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208.
|
[2] |
WU Ziyang, LI Yuwei, GUO Lihua, et al. PARN: Position-aware relation networks for few-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6658–6666.
|
[3] |
ORESHKIN B N, RODRIGUEZ P, and LACOSTE A. TADAM: Task dependent adaptive metric for improved few-shot learning[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 719–729.
|
[4] |
MANIPARAMBIL M, MCGUINNESS K, and O'CONNOR N E. BaseTransformers: Attention over base data-points for One Shot Learning[C]. The 33rd British Machine Vision Conference, London, UK, 2022: 482. doi: arxiv-2210.02476.
|
[5] |
LIU Yang, ZHANG Weifeng, XIANG Chao, et al. Learning to affiliate: Mutual centralized learning for few-shot classification[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14391–14400.
|
[6] |
FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135. doi: 10.5555/3305381.3305498.
|
[7] |
NICHOL A, ACHIAM J, and SCHULMAN J. On first-order meta-learning algorithms[EB/OL]. https://arxiv.org/abs/1803.02999, 2018.
|
[8] |
OH J, YOO H, KIM C, et al. BOIL: Towards representation change for few-shot learning[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–24.doi: 10.48550/arXiv.2008.08882.
|
[9] |
CHEN Yinbo, LIU Zhuang, XU Huijuan, et al. Meta-baseline: Exploring simple meta-learning for few-shot learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9042–9051. doi: 10.1109/ICCV48922.2021.00893.
|
[10] |
SHEN Zhiqiang, LIU Zechun, QIN Jie, et al. Partial is better than all: Revisiting fine-tuning strategy for few-shot learning[C]. The 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 9594–9602.
|
[11] |
SNELL J and ZEMEL R. Bayesian few-shot classification with one-vs-each pólya-gamma augmented Gaussian processes[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–34. doi: 10.48550/arXiv.2007.10417.
|
[12] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255.
|
[13] |
REN Mengye, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. https://arxiv.org/abs/1803.00676, 2018.
|
[14] |
MISHRA N, ROHANINEJAD M, CHEN Xi, et al. A simple neural attentive meta-learner[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–17. doi: 10.48550/arXiv.1707.03141.
|
[15] |
YE Hanjia, HU Hexiang, ZHAN Dechuan, et al. Few-shot learning via embedding adaptation with set-to-set functions[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8805–8814.
|
[16] |
FEI Nanyi, LU Zhiwu, XIANG Tao, et al. MELR: Meta-learning via modeling episode-level relationships for few-shot learning[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–20.
|
[17] |
SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4135–4144.
|
[18] |
LAENEN S and BERTINETTO L. On episodes, prototypical networks, and few-shot learning[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 24581–24592. doi: 10.48550/arXiv.2012.09831.
|
[19] |
LU Yuning, WEN Liangjian, LIU Jianzhuang, et al. Self-supervision can be a good few-shot learner[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 740–758.
|
[20] |
CHEN Zhengyu, GE Jixie, ZHAN Heshen, et al. Pareto self-supervised training for few-shot learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13658–13667.
|
[21] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626.
|