| Citation: | GUO Lihua, WANG Guangfei. Few-shot Image Classification Based on Task-Aware Relation Network[J]. Journal of Electronics & Information Technology, 2024, 46(3): 977-985. doi: 10.11999/JEIT230162 | 
 
	                | [1] | SUNG F, YANG Fongxin, ZHANG Li, et al. Learning to compare: Relation network for few-shot learning[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1199–1208. | 
| [2] | WU Ziyang, LI Yuwei, GUO Lihua, et al. PARN: Position-aware relation networks for few-shot learning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6658–6666. | 
| [3] | ORESHKIN B N, RODRIGUEZ P, and LACOSTE A. TADAM: Task dependent adaptive metric for improved few-shot learning[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 719–729. | 
| [4] | MANIPARAMBIL M, MCGUINNESS K, and O'CONNOR N E. BaseTransformers: Attention over base data-points for One Shot Learning[C]. The 33rd British Machine Vision Conference, London, UK, 2022: 482. doi:  arxiv-2210.02476. | 
| [5] | LIU Yang, ZHANG Weifeng, XIANG Chao, et al. Learning to affiliate: Mutual centralized learning for few-shot classification[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 14391–14400. | 
| [6] | FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135. doi: 10.5555/3305381.3305498. | 
| [7] | NICHOL A, ACHIAM J, and SCHULMAN J. On first-order meta-learning algorithms[EB/OL]. https://arxiv.org/abs/1803.02999, 2018. | 
| [8] | OH J, YOO H, KIM C, et al. BOIL: Towards representation change for few-shot learning[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–24.doi: 10.48550/arXiv.2008.08882. | 
| [9] | CHEN Yinbo, LIU Zhuang, XU Huijuan, et al. Meta-baseline: Exploring simple meta-learning for few-shot learning[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9042–9051. doi: 10.1109/ICCV48922.2021.00893. | 
| [10] | SHEN Zhiqiang, LIU Zechun, QIN Jie, et al. Partial is better than all: Revisiting fine-tuning strategy for few-shot learning[C]. The 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 9594–9602. | 
| [11] | SNELL J and ZEMEL R. Bayesian few-shot classification with one-vs-each pólya-gamma augmented Gaussian processes[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–34. doi:  10.48550/arXiv.2007.10417. | 
| [12] | DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248–255. | 
| [13] | REN Mengye, TRIANTAFILLOU E, RAVI S, et al. Meta-learning for semi-supervised few-shot classification[EB/OL]. https://arxiv.org/abs/1803.00676, 2018. | 
| [14] | MISHRA N, ROHANINEJAD M, CHEN Xi, et al. A simple neural attentive meta-learner[C]. The 6th International Conference on Learning Representations, Vancouver, Canada, 2018: 1–17. doi:  10.48550/arXiv.1707.03141. | 
| [15] | YE Hanjia, HU Hexiang, ZHAN Dechuan, et al. Few-shot learning via embedding adaptation with set-to-set functions[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8805–8814. | 
| [16] | FEI Nanyi, LU Zhiwu, XIANG Tao, et al. MELR: Meta-learning via modeling episode-level relationships for few-shot learning[C]. The 9th International Conference on Learning Representations, Vienna, Austria, 2021: 1–20. | 
| [17] | SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 4135–4144. | 
| [18] | LAENEN S and BERTINETTO L. On episodes, prototypical networks, and few-shot learning[C]. The 35th International Conference on Neural Information Processing Systems, 2021: 24581–24592. doi: 10.48550/arXiv.2012.09831. | 
| [19] | LU Yuning, WEN Liangjian, LIU Jianzhuang, et al. Self-supervision can be a good few-shot learner[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 740–758. | 
| [20] | CHEN Zhengyu, GE Jixie, ZHAN Heshen, et al. Pareto self-supervised training for few-shot learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13658–13667. | 
| [21] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618–626. | 
