Advanced Search
Volume 46 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GAO Yulong, WANG Guoqiang, WANG Gang. Jamming Pattern Open Set Recognition Based on Hyperspherical Triplet Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 895-905. doi: 10.11999/JEIT230145
Citation: GAO Yulong, WANG Guoqiang, WANG Gang. Jamming Pattern Open Set Recognition Based on Hyperspherical Triplet Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 895-905. doi: 10.11999/JEIT230145

Jamming Pattern Open Set Recognition Based on Hyperspherical Triplet Coding

doi: 10.11999/JEIT230145
Funds:  The National Natural Science Foundation of China (62171163, 62271167)
  • Received Date: 2023-03-10
  • Rev Recd Date: 2023-11-05
  • Available Online: 2023-11-15
  • Publish Date: 2024-03-27
  • Jamming pattern recognition is an indispensable part of modern military communication countermeasure. With the emergence of various new malicious jamming patterns in complex electromagnetic environment, the judgment of unknown jamming has become more and more important. Therefore, the jamming pattern recognition algorithm is required to maintain the high-precision recognition of the known jamming, and can also complete the judgment of the unknown jamming to eliminate the influence of the unknown malicious jamming. Based on this, the jamming pattern recognition problem in the presence of unknown jamming as an open set recognition problem is modeled in this paper, and a jamming pattern open set recognition method based on hyperspherical triple coding is proposed. The proposed method uses hyperspherical triples to reduce the dimension of the input time-frequency image to improve the recognition accuracy, and then uses the meta-recognition classifier to accurately complete the open set recognition of the jamming pattern. The simulation results show that the algorithm can efficiently complete the jamming pattern recognition task in open space when the jamming-to-signal ratio is greater than –2 dB.
  • loading
  • [1]
    GONG Shixian, WEI Xizhang, LI Xiang, et al. Mathematic principle of active jamming against wideband LFM radar[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 50–60. doi: 10.1109/JSEE.2015.00008.
    [2]
    SHU Jianfei, LIAO Yanping, and Luan Xiaoming. An interference recognition method based on improved genetic algorithm[C]. The 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 2021: 496–500. doi: 10.1109/ICCC54389.2021.9674374.
    [3]
    周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40(7): 114–125. doi: 10.11959/j.issn.1000- 436x.2019167.

    ZHOU Xin, HE Xiaoxin, and ZHENG Changwen. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7): 114–125. doi: 10.11959/j.issn.1000-436x.2019167.
    [4]
    徐昊. 卫星宽带跳频系统的干扰检测识别技术研究[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.000573.

    XU Hao. Research on jamming detection and recognition technology in satellite broadband frequency hopping systems[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.000573.
    [5]
    WANG Pengyu, CHENG Pengyu, DONG Binhong, et al. Bring globality into convolutional neural networks for wireless interference classification[J]. IEEE Wireless Communications Letters, 2022, 11(3): 538–542. doi: 10.1109/LWC.2021.3135901.
    [6]
    DONG Yihong, JIANG Xiaohan, ZHOU Huaji, et al. SR2CNN: Zero-Shot learning for signal recognition[J]. IEEE Transactions on Signal Processing, 2021, 69: 2316–2329. doi: 10.1109/TSP.2021.3070186.
    [7]
    TANG Yan, ZHAO Zhijin, CHEN Jie, et al. Open world recognition of communication jamming signals[J]. China Communications, 2023, 20(6): 199–214. doi: 10.23919/JCC.2023.00.029.
    [8]
    CHEN Xiangwei, ZHAO Zhijin, YE Xueyi, et al. Efficient open-set recognition for interference signals based on convolutional prototype learning[J]. Applied Sciences, 2022, 12(9): 4380. doi: 10.3390/app12094380.
    [9]
    GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
    [10]
    RUFF L, GÖRNITZ N, DEECKE L, et al. Deep one-class classification[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4390–4399.
    [11]
    SCHEIRER W J, JAIN L P, and BOULT T E. Probability models for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2317–2324. doi: 10.1109/TPAMI.2014.2321392.
    [12]
    BENDALE A and BOULT T E. Towards open set deep networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1563–1572. doi: 10.1109/CVPR.2016.173.
    [13]
    CHEN Guangyao, PENG Peixi, WANG Xiangqian, et al. Adversarial reciprocal points learning for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 8065–8081. doi: 10.1109/TPAMI.2021.3106743.
    [14]
    KONG Shu and RAMANAN D. OpenGAN: Open-set recognition via open data generation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. doi: 10.1109/TPAMI.2022.3184052.
    [15]
    HAN Hao, LI Wen, FENG Zhibin, et al. Proceed from known to unknown: Jamming pattern recognition under open-set setting[J]. IEEE Wireless Communications Letters, 2022, 11(4): 693–697. doi: 10.1109/LWC.2021.3140145.
    [16]
    SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823. doi: 10.1109/CVPR.2015.7298682.
    [17]
    周琳娜, 王东明, 郭云彪, 等. 基于数字图像边缘特性的形态学滤波取证技术[J]. 电子学报, 2008, 36(6): 1047–1051. doi: 10.3321/j.issn:0372-2112.2008.06.002.

    ZHOU Linna, WANG Dongming, GUO Yunbiao, et al. Exposing digital forgeries by detecting image blurred mathematical morphology edge[J]. Acta Electronica Sinica, 2008, 36(6): 1047–1051. doi: 10.3321/j.issn:0372-2112.2008.06.002.
    [18]
    WANG Tongzhou and ISOLA P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere[C]. The 37th International Conference on Machine Learning, Vienna, Austria, 2020: 9929–9939.
    [19]
    DENG Jiankang, GUO Jia, and XUE Niannan, et al. ArcFace: Additive angular margin loss for deep face recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4685–4694. doi: 10.1109/CVPR.2019.00482.
    [20]
    SCHEIRER W J, ROCHA A, MICHEALS R J, et al. Meta-recognition: The theory and practice of recognition score analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1689–1695. doi: 10.1109/TPAMI.2011.54.
    [21]
    秦博伟, 蒋磊, 许华, 等. 基于RE-GAN的调制信号开集识别算法[J]. 系统工程与电子技术, 2023, 45(10): 3321–3328. doi: 10. 12305/j.issn.1001-506X.2023.10.37.

    QIN Bowei, JIANG Lei, XU Hua, et al. Open-set recognition algorithm for modulation signal based on RE-GAN[J]. Systems Engineering and Electronics, 2023, 45(10): 3321–3328. doi: 10.12305/j.issn.1001-506X.2023.10.37.
    [22]
    SMILKOV D, THORAT N, NICHOLSON C, et al. Embedding projector: Interactive visualization and interpretation of embeddings[J]. arXiv: 1611.05469, 2016.
    [23]
    CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. doi: 10.1145/1961189.1961199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views (323) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return