Citation: | GAO Yulong, WANG Guoqiang, WANG Gang. Jamming Pattern Open Set Recognition Based on Hyperspherical Triplet Coding[J]. Journal of Electronics & Information Technology, 2024, 46(3): 895-905. doi: 10.11999/JEIT230145 |
[1] |
GONG Shixian, WEI Xizhang, LI Xiang, et al. Mathematic principle of active jamming against wideband LFM radar[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 50–60. doi: 10.1109/JSEE.2015.00008.
|
[2] |
SHU Jianfei, LIAO Yanping, and Luan Xiaoming. An interference recognition method based on improved genetic algorithm[C]. The 7th International Conference on Computer and Communications (ICCC), Chengdu, China, 2021: 496–500. doi: 10.1109/ICCC54389.2021.9674374.
|
[3] |
周鑫, 何晓新, 郑昌文. 基于图像深度学习的无线电信号识别[J]. 通信学报, 2019, 40(7): 114–125. doi: 10.11959/j.issn.1000- 436x.2019167.
ZHOU Xin, HE Xiaoxin, and ZHENG Changwen. Radio signal recognition based on image deep learning[J]. Journal on Communications, 2019, 40(7): 114–125. doi: 10.11959/j.issn.1000-436x.2019167.
|
[4] |
徐昊. 卫星宽带跳频系统的干扰检测识别技术研究[D]. [硕士论文], 电子科技大学, 2021. doi: 10.27005/d.cnki.gdzku.2021.000573.
XU Hao. Research on jamming detection and recognition technology in satellite broadband frequency hopping systems[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021. doi: 10.27005/d.cnki.gdzku.2021.000573.
|
[5] |
WANG Pengyu, CHENG Pengyu, DONG Binhong, et al. Bring globality into convolutional neural networks for wireless interference classification[J]. IEEE Wireless Communications Letters, 2022, 11(3): 538–542. doi: 10.1109/LWC.2021.3135901.
|
[6] |
DONG Yihong, JIANG Xiaohan, ZHOU Huaji, et al. SR2CNN: Zero-Shot learning for signal recognition[J]. IEEE Transactions on Signal Processing, 2021, 69: 2316–2329. doi: 10.1109/TSP.2021.3070186.
|
[7] |
TANG Yan, ZHAO Zhijin, CHEN Jie, et al. Open world recognition of communication jamming signals[J]. China Communications, 2023, 20(6): 199–214. doi: 10.23919/JCC.2023.00.029.
|
[8] |
CHEN Xiangwei, ZHAO Zhijin, YE Xueyi, et al. Efficient open-set recognition for interference signals based on convolutional prototype learning[J]. Applied Sciences, 2022, 12(9): 4380. doi: 10.3390/app12094380.
|
[9] |
GENG Chuanxing, HUANG Shengjun, and CHEN Songcan. Recent advances in open set recognition: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614–3631. doi: 10.1109/TPAMI.2020.2981604.
|
[10] |
RUFF L, GÖRNITZ N, DEECKE L, et al. Deep one-class classification[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 4390–4399.
|
[11] |
SCHEIRER W J, JAIN L P, and BOULT T E. Probability models for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2317–2324. doi: 10.1109/TPAMI.2014.2321392.
|
[12] |
BENDALE A and BOULT T E. Towards open set deep networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1563–1572. doi: 10.1109/CVPR.2016.173.
|
[13] |
CHEN Guangyao, PENG Peixi, WANG Xiangqian, et al. Adversarial reciprocal points learning for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 8065–8081. doi: 10.1109/TPAMI.2021.3106743.
|
[14] |
KONG Shu and RAMANAN D. OpenGAN: Open-set recognition via open data generation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. doi: 10.1109/TPAMI.2022.3184052.
|
[15] |
HAN Hao, LI Wen, FENG Zhibin, et al. Proceed from known to unknown: Jamming pattern recognition under open-set setting[J]. IEEE Wireless Communications Letters, 2022, 11(4): 693–697. doi: 10.1109/LWC.2021.3140145.
|
[16] |
SCHROFF F, KALENICHENKO D, and PHILBIN J. FaceNet: A unified embedding for face recognition and clustering[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 815–823. doi: 10.1109/CVPR.2015.7298682.
|
[17] |
周琳娜, 王东明, 郭云彪, 等. 基于数字图像边缘特性的形态学滤波取证技术[J]. 电子学报, 2008, 36(6): 1047–1051. doi: 10.3321/j.issn:0372-2112.2008.06.002.
ZHOU Linna, WANG Dongming, GUO Yunbiao, et al. Exposing digital forgeries by detecting image blurred mathematical morphology edge[J]. Acta Electronica Sinica, 2008, 36(6): 1047–1051. doi: 10.3321/j.issn:0372-2112.2008.06.002.
|
[18] |
WANG Tongzhou and ISOLA P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere[C]. The 37th International Conference on Machine Learning, Vienna, Austria, 2020: 9929–9939.
|
[19] |
DENG Jiankang, GUO Jia, and XUE Niannan, et al. ArcFace: Additive angular margin loss for deep face recognition[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 4685–4694. doi: 10.1109/CVPR.2019.00482.
|
[20] |
SCHEIRER W J, ROCHA A, MICHEALS R J, et al. Meta-recognition: The theory and practice of recognition score analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1689–1695. doi: 10.1109/TPAMI.2011.54.
|
[21] |
秦博伟, 蒋磊, 许华, 等. 基于RE-GAN的调制信号开集识别算法[J]. 系统工程与电子技术, 2023, 45(10): 3321–3328. doi: 10. 12305/j.issn.1001-506X.2023.10.37.
QIN Bowei, JIANG Lei, XU Hua, et al. Open-set recognition algorithm for modulation signal based on RE-GAN[J]. Systems Engineering and Electronics, 2023, 45(10): 3321–3328. doi: 10.12305/j.issn.1001-506X.2023.10.37.
|
[22] |
SMILKOV D, THORAT N, NICHOLSON C, et al. Embedding projector: Interactive visualization and interpretation of embeddings[J]. arXiv: 1611.05469, 2016.
|
[23] |
CHANG C C and LIN C J. LIBSVM: A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27. doi: 10.1145/1961189.1961199.
|