Citation: | LIU Wei, LI Wenjuan, GAO Jin, LI Liang. Spiking Neural Network for Object Detection Based on Dual Error[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4469-4476. doi: 10.11999/JEIT221549 |
[1] |
DING Xiaohan, ZHANG Xiangyu, MA Ningning, et al. RepVGG: Making VGG-style ConvNets great again[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13728–13737.
|
[2] |
GUO Yiwen, YAO Anbang, and CHEN Yurong. Dynamic network surgery for efficient DNNs[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016.
|
[3] |
GOU Jianping, YU Baosheng, MAYBANK S J, et al. Knowledge distillation: A survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789–1819. doi: 10.1007/s11263-021-01453-z
|
[4] |
WANG Lin and YOON K J. Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(6): 3048–3068. doi: 10.1109/TPAMI.2021.3055564
|
[5] |
曲志昱, 李根, 邓志安. 基于知识蒸馏与注意力图的雷达信号识别方法[J]. 电子与信息学报, 2022, 44(9): 3170–3177. doi: 10.11999/JEIT210695
QU Zhiyu, LI Gen, DENG Zhian. Radar signal recognition method based on knowledge distillation and attention map[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3170–3177. doi: 10.11999/JEIT210695
|
[6] |
GONG Yanchao, YANG Kaifang, LIU Ying, et al. Quantization parameter cascading for surveillance video coding considering all inter reference frames[J]. IEEE Transactions on Image Processing, 2021, 30: 5692–5707. doi: 10.1109/TIP.2021.3087413
|
[7] |
JI Mengyu, PENG Gaoliang, LI Sijue, et al. A neural network compression method based on knowledge-distillation and parameter quantization for the bearing fault diagnosis[J]. Applied Soft Computing, 2022, 127: 109331. doi: 10.1016/j.asoc.2022.109331
|
[8] |
AKOPYAN F, SAWADA J, CASSIDY A, et al. TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34(10): 1537–1557. doi: 10.1109/TCAD.2015.2474396
|
[9] |
MA Songchen, PEI Jing, ZHANG Weihao, et al. Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots[J]. Science Robotics, 2022, 7(67): eabk2948. doi: 10.1126/scirobotics.abk2948
|
[10] |
MA De, SHEN Juncheng, GU Zonghua, et al. Darwin: A neuromorphic hardware co-processor based on spiking neural networks[J]. Science China Information Sciences, 2017, 77: 43–51. doi: 10.1016/j.sysarc.2017.01.003
|
[11] |
BU Tong, FANG Wei, DING Jianhao, et al. Optimal ANN-SNN conversion for high-accuracy and ultra-low-latency spiking neural networks[C]. The Tenth International Conference on Learning Representations, Addis Ababa, Ethiopia, 2022.
|
[12] |
CAO Yongqiang, CHEN Yang, and KHOSLA D. Spiking deep convolutional neural networks for energy-efficient object recognition[J]. International Journal of Computer Vision, 2015, 113(1): 54–66. doi: 10.1007/s11263-014-0788-3
|
[13] |
SUN Wei, DAI Liang, ZHANG Xiaorui, et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448–8463. doi: 10.1007/s10489-021-02893-3
|
[14] |
WU Peirong, LIU Airong, FU Jiyang, et al. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm[J]. Engineering Structures, 2022, 272: 114962. doi: 10.1016/j.engstruct.2022.114962
|
[15] |
KIM S, PARK S, NA B, et al. Spiking-YOLO: Spiking neural network for energy-efficient object detection[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA, 2020: 11270–11277.
|
[16] |
SENGUPTA A, YE Yuting, WANG R, et al. Going deeper in spiking neural networks: VGG and residual architectures[J]. Frontiers in Neuroscience, 2019, 13: 95. doi: 10.3389/fnins.2019.00095
|
[17] |
ZHANG Tielin, ZENG Yi, ZHAO Dongcheng, et al. A plasticity-centric approach to train the non-differential spiking neural networks[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 77.
|
[18] |
杨静, 吉晓阳, 李少波, 等. 具有正则化约束的脉冲神经网络机器人触觉物体识别方法[J]. 电子与信息学报, 2023, 45(7): 2595–2604.
YANG Jing, JI Xiaoyang, LI Shaobo, et al. Spiking neural network robot tactile object recognition method with regularization constraints[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2595–2604.
|
[19] |
MASQUELIER T and THORPE S J. Learning to recognize objects using waves of spikes and spike timing-dependent plasticity[C]. The 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010: 1–8.
|
[20] |
BOHTE S M, KOK J N, and LA POUTRÉ J A. SpikeProp: Backpropagation for networks of spiking neurons[C]. The 30th European Symposium on Artificial Neural Networks, Bruges, Belgium, 2000: 419–424.
|
[21] |
HEBB D O. The effect of early and late brain injury upon test scores, and the nature of normal adult intelligence[J]. Proceedings of the American Philosophical Society, 1942, 85(3): 275–292.
|
[22] |
CAPORALE N and DAN Yang. Spike timing-dependent plasticity: A Hebbian learning rule[J]. Annual Review of Neuroscience, 2008, 31: 25–46. doi: 10.1146/annurev.neuro.31.060407.125639
|
[23] |
GERSTNER W. A Framework for Spiking Neuron Models: The Spike Response Model[M]. Handbook of Biological Physics, 2001, 4: 469–516.
|
[24] |
GHAHARI A and ENDERLE J D. A neuron-based time-optimal controller of horizontal saccadic eye movements[J]. International Journal of Neural Systems, 2014, 24(6): 1450017. doi: 10.1142/S0129065714500178
|
[25] |
DIEHL P U, NEIL D, BINAS J, et al. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing[C]. 2015 International Joint Conference on Neural Networks, Killarney, Ireland, 2015: 1–8.
|
[26] |
FANG Wei, YU Zhaofei, CHEN Yanqi, et al. Deep residual learning in spiking neural networks[C/OL]. The 35th International Conference on Neural Information Processing Systems, 2021: 21056–21069.
|
[27] |
HAN Bing and ROY K. Deep spiking neural network: Energy efficiency through time based coding[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 388–404.
|
[28] |
HU Yangfan, TANG Huajin, and PAN Gang. Spiking deep residual networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 5200–5205.
|
[29] |
BU Tong, DING Jianhao, YU Zhaofei, et al. Optimized potential initialization for low-latency spiking neural networks[C]. The AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2022: 11–20.
|