Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Jun, LU Jiacheng, LIU Tongshun, ZHANG Qi, CAI Shu. Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468
Citation: ZHANG Jun, LU Jiacheng, LIU Tongshun, ZHANG Qi, CAI Shu. Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4262-4270. doi: 10.11999/JEIT221468

Power Allocation Method Based on Overlapping Visibility Region in Extra Large Scale MIMO System

doi: 10.11999/JEIT221468
Funds:  The National Natural Science Foundation of China (62071247, 62171231, 62071249)
  • Received Date: 2022-11-23
  • Rev Recd Date: 2023-04-21
  • Available Online: 2023-04-27
  • Publish Date: 2023-12-26
  • In an extra large scale Multiple-Input Multiple-Output(MIMO) system where the Visibility Regions(VR) of different users are overlapping, the ergodic sum-rate is maximized by designing power allocation. Specifically, one base station equipped with an extra large scale array serves multiple users equipped with single-antenna, and their VRs are overlapped with adjacent users’. To reduce the inter-users interference and precoding complexity, the base station array is divided into several subarrays by the VR distributions, and then the regularized zero forcing precoding is employed for different subarray respectively. Furthermore, by exploiting the statistical channel state information, an approximation of the ergodic sum-rate is derived based on the large-dimensional random matrix theory. Based on the approximations, an optimal power allocation solution for different users is given in closed-form. Simulations illustrate that the proposed approximation fits the ergodic results well, and the proposed power allocation method can effectively improve system performances.
  • loading
  • [1]
    尤肖虎, 尹浩, 邬贺铨. 6G与广域物联网[J]. 物联网学报, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158

    YOU Xiaohu, YIN Hao, and WU Hequan. On 6G and wide-area IoT[J]. Chinese Journal on Internet of Things, 2020, 4(1): 3–11. doi: 10.11959/j.issn.2096-3750.2020.00158
    [2]
    CHEN Xiaoming, NG D W K, YU Wei, et al. Massive access for 5G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(3): 615–637. doi: 10.1109/JSAC.2020.3019724
    [3]
    LU Haiquan and ZENG Yong. Near-field modeling and performance analysis for multi-user extremely large-scale MIMO communication[J]. IEEE Communications Letters, 2022, 26(2): 277–281. doi: 10.1109/LCOMM.2021.3129317
    [4]
    IMT-2030(6G)推进组. 6G总体愿景与潜在关键技术[R]. IMT-2030(6G)推进组, 2021.
    [5]
    HAN Yu, JIN Shi, WEN Chaokai, et al. Localization and channel reconstruction for extra large RIS-assisted massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5): 1011–1025. doi: 10.1109/JSTSP.2022.3174654
    [6]
    GONZÁLEZ-COMA J P, LÓPEZ-MARTÍNEZ F J, and CASTEDO L. Low-complexity distance-based scheduling for multi-user XL-MIMO systems[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2407–2411. doi: 10.1109/LWC.2021.3101940
    [7]
    CUI Mingyao and DAI Linglong. Channel estimation for extremely large-scale MIMO: Far-field or near-field?[J]. IEEE Transactions on Communications, 2022, 70(4): 2663–2677. doi: 10.1109/TCOMM.2022.3146400
    [8]
    FILHO J C, BRANTE G, SOUZA R D, et al. Exploring the non-overlapping visibility regions in XL-MIMO random access and scheduling[J]. IEEE Transactions on Wireless Communications, 2022, 21(8): 6597–6610. doi: 10.1109/TWC.2022.3151329
    [9]
    HUANG Chongwen, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157–4170. doi: 10.1109/TWC.2019.2922609
    [10]
    LI Xueru, ZHOU Shidong, BJÖRNSON E, et al. Capacity analysis for spatially non-wide sense stationary uplink massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 7044–7056. doi: 10.1109/TWC.2015.2464219
    [11]
    ALI A, DE CARVALHO E, and HEATH R W. Linear receivers in non-stationary massive MIMO channels with visibility regions[J]. IEEE Wireless Communications Letters, 2019, 8(3): 885–888. doi: 10.1109/LWC.2019.2898572
    [12]
    MARINELLO J C, ABRÃO T, AMIRI A, et al. Antenna selection for improving energy efficiency in XL-MIMO systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13305–13318. doi: 10.1109/TVT.2020.3022708
    [13]
    ZHANG Jun, WEN Chaokai, JIN Shi, et al. Large system analysis of cooperative multi-cell downlink transmission via regularized channel inversion with imperfect CSIT[J]. IEEE Transactions on Wireless Communications, 2013, 12(10): 4801–4813. doi: 10.1109/TWC.2013.081413.120460
    [14]
    BAI Zhidong, FANG Zhaoben, and LIANG Yingchang. Spectral Theory of Large Dimensional Random Matrices and its Applications to Wireless Communications and Finance Statistics: Random Matrix Theory and its Applications[M]. Singapore: World Scientific, 2014: 11–16.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (392) PDF downloads(152) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return