Advanced Search
Volume 45 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
CHEN Long, ZHANG Dingze, WANG Kun, XU Minpeng, MING Dong. Research Progress on the Coding and Decoding of Scalp Electroencephalogram Induced by Movement Intention and Brain-Computer Interface[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3458-3467. doi: 10.11999/JEIT221449
Citation: CHEN Long, ZHANG Dingze, WANG Kun, XU Minpeng, MING Dong. Research Progress on the Coding and Decoding of Scalp Electroencephalogram Induced by Movement Intention and Brain-Computer Interface[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3458-3467. doi: 10.11999/JEIT221449

Research Progress on the Coding and Decoding of Scalp Electroencephalogram Induced by Movement Intention and Brain-Computer Interface

doi: 10.11999/JEIT221449
Funds:  The National Key Research and Development Program of China (2021YFF0602902), The National Natural Science Foundation of China (82001939, 62122059, 81925020, 62206198)
  • Received Date: 2022-11-17
  • Rev Recd Date: 2023-04-12
  • Available Online: 2023-04-24
  • Publish Date: 2023-10-31
  • Movement intention based Brain-Computer Interfaces (BCIs) have important research significance and application value in motor enhancement, replacement and rehabilitation. Among them, Motor Imagery (MI) is the most commonly used BCI paradigm to represent motor intention. However, traditional MI-BCIs usually focus on the recognition of the intention of different limbs, and the classification accuracies are relatively low, which restricts fine motor control and rehabilitation. To solve the above problems, in recent years, researchers have carried out a series of meaningful explorations in coding and decoding of scalp ElectroEncephaloGram (EEG) from three aspects: specific parts of a single limb movement intention, kinematic and kinetics intention, and mismatch between movement and expectation. On the basis of the above research, some typical applications to high freedom motor control and stroke rehabilitation have been developed. The research progress in this field from the related paradigms of scalp EEG coding and decoding of motor intention and its BCI application is reviewed. Besides, the existing challenges and possible solutions are discussed, considering to promote the in-depth research and application of motor intention based BCIs.
  • loading
  • [1]
    何庆华, 彭承琳, 吴宝明. 脑机接口技术研究方法[J]. 重庆大学学报:自然科学版, 2002, 25(12): 106–109. doi: 10.3969/j.issn.1000-582X.2002.12.030

    HE Qinghua, PENG Chenglin, and WU Baoming. Research methods of brain-computer interface technology[J]. Journal of Chongqing University:Natural Science Edition, 2002, 25(12): 106–109. doi: 10.3969/j.issn.1000-582X.2002.12.030
    [2]
    XU Minpeng, HAN Jin, WANG Yijun, et al. Implementing over 100 command codes for a high-speed hybrid brain-computer interface using concurrent P300 and SSVEP features[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(11): 3073–3082. doi: 10.1109/TBME.2020.2975614
    [3]
    XU Minpeng, XIAO Xiaolin, WANG Yijun, et al. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5): 1166–1175. doi: 10.1109/TBME.2018.2799661
    [4]
    MENG Jiayuan, XU Minpeng, WANG Kun, et al. Separable EEG features induced by timing prediction for active brain-computer interfaces[J]. Sensors, 2020, 20(12): 3588. doi: 10.3390/s20123588
    [5]
    张力新, 张珊珊, 王坤, 等. 运动相关思维诱发脑电信息解码与应用综述[J]. 仪器仪表学报, 2019, 40(1): 1–11. doi: 10.19650/j.cnki.cjsi.J1804309

    ZHANG Lixin, ZHANG Shanshan, WANG Kun, et al. Review on the decoding and application of electroencephalography information induced by motor-related mental activity[J]. Chinese Journal of Scientific Instrument, 2019, 40(1): 1–11. doi: 10.19650/j.cnki.cjsi.J1804309
    [6]
    NG A K, ANG K K, TEE K P, et al. Optimizing low-frequency common spatial pattern features for multi-class classification of hand movement directions[C]. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013: 2780–2783.
    [7]
    ROBINSON N, GUAN Cuntai, VINOD A P, et al. Multi-class EEG classification of voluntary hand movement directions[J]. Journal of Neural Engineering, 2013, 10(5): 056018. doi: 10.1088/1741-2560/10/5/056018
    [8]
    YUAN Han, PERDONI C, and HE Bin. Relationship between speed and EEG activity during imagined and executed hand movements[J]. Journal of Neural Engineering, 2010, 7(2): 026001. doi: 10.1088/1741-2560/7/2/026001
    [9]
    JOCHUMSEN M, NIAZI I K, MRACHACZ-KERSTING N, et al. Detection and classification of movement-related cortical potentials associated with task force and speed[J]. Journal of Neural Engineering, 2013, 10(5): 056015. doi: 10.1088/1741-2560/10/5/056015
    [10]
    YIN Xuxian, XU Baolei, JIANG Changhao, et al. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching[J]. Journal of Neural Engineering, 2015, 12(3): 036004. doi: 10.1088/1741-2560/12/3/036004
    [11]
    YIN Xuxian, XU Baolei, JIANG Changhao, et al. NIRS-based classification of clench force and speed motor imagery with the use of empirical mode decomposition for BCI[J]. Medical Engineering & Physics, 2015, 37(3): 280–286. doi: 10.1016/j.medengphy.2015.01.005
    [12]
    李玉, 熊馨, 李昭阳, 等. 基于功能性近红外光谱识别右脚三种想象动作研究[J]. 生物医学工程学杂志, 2020, 37(2): 262–270. doi: 10.7507/1001-5515.201905001

    LI Yu, XIONG Xin, LI Zhaoyang, et al. Recognition of three different imagined movement of the right foot based on functional near-infrared spectroscopy[J]. Journal of Biomedical Engineering, 2020, 37(2): 262–270. doi: 10.7507/1001-5515.201905001
    [13]
    WANG Kun, XU Minpeng, WANG Yijun, et al. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces[J]. Journal of Neural Engineering, 2020, 17(1): 016033. doi: 10.1088/1741-2552/ab598f
    [14]
    EDELMAN B J, BAXTER B, and HE Bin. EEG source imaging enhances the decoding of complex right-hand motor imagery tasks[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(1): 4–14. doi: 10.1109/TBME.2015.2467312
    [15]
    MILLER K J, ZANOS S, FETZ E E, et al. Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans[J]. Journal of Neuroscience, 2009, 29(10): 3132–3137. doi: 10.1523/JNEUROSCI.5506-08.2009
    [16]
    XIAO Ran and DING Lei. Evaluation of EEG features in decoding individual finger movements from one hand[J]. Computational and Mathematical Methods in Medicine, 2013, 2013: 243257. doi: 10.1155/2013/243257
    [17]
    SALEHI S S M, MOGHADAMFALAHI M, QUIVIRA F, et al. Decoding complex imagery hand gestures[C]. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 2017: 2968–2971.
    [18]
    MWATA-VELU T, AVINA-CERVANTES J G, CRUZ-DUARTE J M, et al. Imaginary finger movements decoding using empirical mode decomposition and a stacked BiLSTM architecture[J]. Mathematics, 2021, 9(24): 3297. doi: 10.3390/MATH9243297
    [19]
    LIU Kunjia, YU Yang, LIU Yadong, et al. EEG-based motor imagery differing in task complexity[C]. 7th International Conference on Intelligence Science and Big Data Engineering, Dalian, China, 2017: 608–618.
    [20]
    CHEN Zhitang, WANG Zhongpeng, WANG Kun, et al. Recognizing motor imagery between hand and forearm in the same limb in a hybrid brain computer interface paradigm: An online study[J]. IEEE Access, 2019, 7: 59631–59639. doi: 10.1109/ACCESS.2019.2915614
    [21]
    MOHAMED A K, MARWALA T, and JOHN L R. Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI[C]. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA, 2011: 6289–6293.
    [22]
    KANDEL E R, SCHWARTZ J H, and JESSELL T M. Principles of Neural Science[M]. 4th ed. New York, USA: McGraw-Hill, 2000.
    [23]
    WANG Jiarong, BI Luzheng, and FEI Weijie. Using non-linear dynamics of EEG signals to classify primary hand movement intent under opposite hand movement[J]. Frontiers in Neurorobotics, 2022, 16: 845127. doi: 10.3389/fnbot.2022.845127
    [24]
    BENZY V K, VINOD A P, SUBASREE R, et al. Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(12): 3051–3062. doi: 10.1109/TNSRE.2020.3039331
    [25]
    CHOUHAN T, ROBINSON N, VINOD A P, et al. Wavlet phase-locking based binary classification of hand movement directions from EEG[J]. Journal of Neural Engineering, 2018, 15(6): 066008. doi: 10.1088/1741-2552/aadeed
    [26]
    SOSNIK R and BEN ZUR O. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials[J]. Journal of Neural Engineering, 2020, 17(1): 016065. doi: 10.1088/1741-2552/ab59a7
    [27]
    MONDINI V, KOBLER R J, SBURLEA A I, et al. Continuous low-frequency EEG decoding of arm movement for closed-loop, natural control of a robotic arm[J]. Journal of Neural Engineering, 2020, 17(4): 046031. doi: 10.1088/1741-2552/aba6f7
    [28]
    ROBINSON N, CHESTER W J, and SMITHA K G. Use of mobile EEG in decoding hand movement speed and position[J]. IEEE Transactions on Human-Machine Systems, 2021, 51(2): 120–129. doi: 10.1109/THMS.2021.3056274
    [29]
    CRAMER S C, WEISSKOFF R M, SCHAECHTER J D, et al. Motor cortex activation is related to force of squeezing[J]. Human Brain Mapping, 2002, 16(4): 197–205. doi: 10.1002/hbm.10040
    [30]
    WANG Kun, WANG Zhongpeng, GUO Yi, et al. A brain-computer interface driven by imagining different force loads on a single hand: An online feasibility study[J]. Journal of Neuroengineering and Rehabilitation, 2017, 14(1): 93. doi: 10.1186/s12984-017-0307-1
    [31]
    FU Yunfa, CHEN Jian, and XIONG Xin. Calculation and analysis of microstate related to variation in executed and imagined movement of force of hand clenching[J]. Computational Intelligence and Neuroscience, 2018, 2018: 9270685. doi: 10.1155/2018/9270685
    [32]
    XIONG Xin, FU Yunfa, CHEN Jian, et al. Single-trial recognition of imagined forces and speeds of hand clenching based on brain topography and brain network[J]. Brain Topography, 2019, 32(2): 240–254. doi: 10.1007/s10548-018-00696-3
    [33]
    USAMA N, KUNZ LEERSKOV K, NIAZI I K, et al. Classification of error-related potentials from single-trial EEG in association with executed and imagined movements: A feature and classifier investigation[J]. Medical & Biological Engineering & Computing, 2020, 58(11): 2699–2710. doi: 10.1007/s11517-020-02253-2
    [34]
    FARABBI A, ALOIA V, and MAINARDI L. ARX-based EEG data balancing for error potential BCI[J]. Journal of Neural Engineering, 2022, 19(3): 036023. doi: 10.1088/1741-2552/ac6d7f
    [35]
    KUMAR A, GAO Lin, PIROGOVA E, et al. A review of error-related potential-based brain-computer interfaces for motor impaired people[J]. IEEE Access, 2019, 7: 142451–142466. doi: 10.1109/ACCESS.2019.2944067
    [36]
    LOPES-DIAS C, SBURLEA A I, and MÜLLER-PUTZ G R. Online asynchronous decoding of error-related potentials during the continuous control of a robot[J]. Scientific Reports, 2019, 9(1): 17596. doi: 10.1038/s41598-019-54109-x
    [37]
    ZHANG Huaijian, CHAVARRIAGA R, GHEORGHE L, et al. Inferring driver's turning direction through detection of error related brain activity[C]. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013: 2196–2199.
    [38]
    ITURRATE I, GRIZOU J, OMEDES J, et al. Exploiting task constraints for self-calibrated brain-machine interface control using error-related potentials[J]. PLoS One, 2015, 10(7): e0131491. doi: 10.1371/journal.pone.0131491
    [39]
    EHRLICH S K and CHENG G. Human-agent co-adaptation using error-related potentials[J]. Journal of Neural Engineering, 2018, 15(6): 066014. doi: 10.1088/1741-2552/aae069
    [40]
    KREILINGER A, NEUPER C, PFURTSCHELLER G, et al. Implementation of error detection into the graz-brain-computer interface, the interaction error potential[C]. Assistive Technology from Adapted Equipment to Inclusive Environments, Florenz, Italy, 2009: 195–199.
    [41]
    PARASHIVA P K and VINOD A P. Improving direction decoding accuracy during online motor imagery based brain-computer interface using error-related potentials[J]. Biomedical Signal Processing and Control, 2022, 74: 103515. doi: 10.1016/J.BSPC.2022.103515
    [42]
    BHATTACHARYYA S, KONAR A, and TIBAREWALA D N. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose[J]. Medical & Biological Engineering & Computing, 2014, 52(12): 1007–1017. doi: 10.1007/s11517-014-1204-4
    [43]
    NOURMOHAMMADI A, JAFARI M, and ZANDER T O. A survey on unmanned aerial vehicle remote control using brain-computer interface[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(4): 337–348. doi: 10.1109/THMS.2018.2830647
    [44]
    OSBORN L E, DING Keqin, HAYS M A, et al. Sensory stimulation enhances phantom limb perception and movement decoding[J]. Journal of Neural Engineering, 2020, 17(5): 056006. doi: 10.1088/1741-2552/abb861
    [45]
    MENG Jianjun, ZHANG Shuying, BEKYO A, et al. Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks[J]. Scientific Reports, 2016, 6: 38565. doi: 10.1038/srep38565
    [46]
    韩锦, 董博文, 刘邈, 等. 基于P300-SSVEP的双人协同脑-控机械臂汉字书写系统[J]. 数据采集与处理, 2022, 37(6): 1401–1411. doi: 10.16337/j.1004-9037.2022.06.020

    HAN Jin, DONG Bowen, LIU Miao, et al. Two-person collaborative brain-controlled robotic arm system for writing Chinese character using P300 and SSVEP features[J]. Journal of Data Acquisition and Processing, 2022, 37(6): 1401–1411. doi: 10.16337/j.1004-9037.2022.06.020
    [47]
    EDELMAN B J, MENG Jianjun, SUMA D, et al. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control[J]. Science Robotics, 2019, 4(31): eaaw6844. doi: 10.1126/scirobotics.aaw6844
    [48]
    KOBLER R J, SBURLEA A I, and MÜLLER-PUTZ G R. Tuning characteristics of low-frequency EEG to positions and velocities in visuomotor and oculomotor tracking tasks[J]. Scientific Reports, 2018, 8(1): 17713. doi: 10.1038/s41598-018-36326-y
    [49]
    WALDERT S, PISTOHL T, BRAUN C, et al. A review on directional information in neural signals for brain-machine interfaces[J]. Journal of Physiology-Paris, 2009, 103(3/5): 244–254. doi: 10.1016/j.jphysparis.2009.08.007
    [50]
    HONG Jian and PARK J H. Efficacy of neuro-feedback training for PTSD symptoms: A systematic review and meta-analysis[J]. International Journal of Environmental Research And Public Health, 2022, 19(20): 13096. doi: 10.3390/IJERPH192013096
    [51]
    BIASIUCCI A, LEEB R, ITURRATE I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nature Communications, 2018, 9(1): 2421. doi: 10.1038/s41467-018-04673-z
    [52]
    BARSOTTI M, LEONARDIS D, LOCONSOLE C, et al. A full upper limb robotic exoskeleton for reaching and grasping rehabilitation triggered by MI-BCI[C]. 2015 IEEE International Conference on Rehabilitation Robotics, Singapore, 2015: 49–54.
    [53]
    LIU Jingyi, ABD-EL-BARR M, and CHI J H. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients[J]. Neurosurgery, 2016, 79(6): N13–N14. doi: 10.1038/srep30383
    [54]
    QUANDT F and HUMMEL F C. The influence of functional electrical stimulation on hand motor recovery in stroke patients: A review[J]. Experimental & Translational Stroke Medicine, 2014, 6: 9. doi: 10.1186/2040-7378-6-9
    [55]
    YOO S S, LEE J H, O'LEARY H, et al. Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery[J]. International Journal of Imaging Systems and Technology, 2008, 18(1): 69–78. doi: 10.1002/ima.20139
    [56]
    XU Minpengg, HE Feng, JUNG T P, et al. Current challenges for the practical application of electroencephalography-based brain-computer interfaces[J]. Engineering, 2021, 7(12): 1710–1712. doi: 10.1016/j.eng.2021.09.011
    [57]
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    [58]
    XU Lichao, XU Minpeng, MA Zhen, et al. Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization[J]. Journal of Neural Engineering, 2021, 18(4): 0460e5. doi: 10.1088/1741-2552/AC1ED2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (974) PDF downloads(310) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return