Citation: | HU Jun, SHI Yijie. Adversarial Defense Algorithm Based on Momentum Enhanced Future Map[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4548-4555. doi: 10.11999/JEIT221414 |
[1] |
MAULUD D H, ZEEBAREE S R M, JACKSI K, et al. State of art for semantic analysis of natural language processing[J]. Qubahan Academic Journal, 2021, 1(2): 21–28. doi: 10.48161/qaj.v1n2a44
|
[2] |
ALHARBI S, ALRAZGAN M, ALRASHED A, et al. Automatic speech recognition: Systematic literature review[J]. IEEE Access, 2021, 9: 131858–131876. doi: 10.1109/ACCESS.2021.3112535
|
[3] |
陈怡, 唐迪, 邹维. 基于深度学习的Android恶意软件检测: 成果与挑战[J]. 电子与信息学报, 2020, 42(9): 2082–2094. doi: 10.11999/JEIT200009
CHEN Yi, TANG Di, and ZOU Wei. Android malware detection based on deep learning: Achievements and challenges[J]. Journal of Electronics &Information Technology, 2020, 42(9): 2082–2094. doi: 10.11999/JEIT200009
|
[4] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[5] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[6] |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[7] |
CARLINI N and WAGNER D. Towards evaluating the robustness of neural networks[C]. 2017 IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2017: 39–57.
|
[8] |
LIU Yanpei, CHEN Xinyun, LIU Chang, et al. Delving into transferable adversarial examples and black-box attacks[C]. 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[9] |
ANDRIUSHCHENKO M, CROCE F, FLAMMARION N, et al. Square attack: A query-efficient black-box adversarial attack via random search[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 484–501.
|
[10] |
LIN Jiadong, SONG Chuanbiao, HE Kun, et al. Nesterov accelerated gradient and scale invariance for adversarial attacks[C]. 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[11] |
邹军华, 段晔鑫, 任传伦, 等. 基于噪声初始化、Adam-Nesterov方法和准双曲动量方法的对抗样本生成方法[J]. 电子学报, 2022, 50(1): 207–216. doi: 10.12263/DZXB.20200839
ZOU Junhua, DUAN Yexin, REN Chuanlun, et al. Perturbation initialization, Adam-Nesterov and Quasi-Hyperbolic momentum for adversarial examples[J]. Acta Electronica Sinica, 2022, 50(1): 207–216. doi: 10.12263/DZXB.20200839
|
[12] |
XU Weilin, EVANS D, and QI Yanjun. Feature squeezing: Detecting adversarial examples in deep neural networks[C]. 2018 Network and Distributed System Security Symposium (NDSS), San Diego, USA, 2018.
|
[13] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
|
[14] |
DHILLON G S, AZIZZADENESHELI K, LIPTON Z C, et al. Stochastic activation pruning for robust adversarial defense[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[15] |
VIEVK B S and BABU R V. Single-step adversarial training with dropout scheduling[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 947–956.
|
[16] |
MENG Dongyu and CHEN Hao. MagNet: A two-pronged defense against adversarial examples[C]. The 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 135–147.
|
[17] |
SONG Yang, KIM T, NOWOZIN S, et al. PixelDefend: Leveraging generative models to understand and defend against adversarial examples[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[18] |
PAPERNOT N, MCDANIEL P, WU Xi, et al. Distillation as a defense to adversarial perturbations against deep neural networks[C]. 2016 IEEE Symposium on Security and Privacy (SP), San Jose, USA, 2016: 582–597.
|
[19] |
XIE Cihang, WU Yuxin, VAN DER MAATEN L, et al. Feature denoising for improving adversarial robustness[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 501–509.
|
[20] |
HE Zhezhi, RAKIN A S, and FAN Deliang. Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 588–597.
|
[21] |
JEDDI A, SHAFIEE M J, KARG M, et al. Learn2Perturb: An end-to-end feature perturbation learning to improve adversarial robustness[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 1238–1247.
|
[22] |
ZHANG Xiaoqin, WANG Jinxin, WANG Tao, et al. Robust feature learning for adversarial defense via hierarchical feature alignment[J]. Information Sciences, 2021, 560: 256–270. doi: 10.1016/J.INS.2020.12.042
|
[23] |
XIAO Chang and ZHENG Changxi. One man's trash is another man's treasure: Resisting adversarial examples by adversarial examples[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 409–418.
|
[24] |
ATHALYE A, CARLINI N, and WAGNER D. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 274–283.
|