| Citation: | LUO Yihao, LIU Qipei, ZHANG Yin, ZHOU Heyu, ZHANG Juntao, CAO Xiang. Review of Underwater Image Object Detection Based on Deep Learning[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3468-3482. doi: 10.11999/JEIT221402 |
| [1] |
郭戈, 王兴凯, 徐慧朴. 基于声呐图像的水下目标检测、识别与跟踪研究综述[J]. 控制与决策, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678
GUO Ge, WANG Xingkai, and XU Huipu. Review on underwater target detection, recognition and tracking based on sonar image[J]. Control and Decision, 2018, 33(5): 906–922. doi: 10.13195/j.kzyjc.2017.1678
|
| [2] |
GOMES D, SAIF A F M S, and NANDI D. Robust underwater object detection with autonomous underwater vehicle: A comprehensive study[C]. 2020 International Conference on Computing Advancements, Dhaka, Bangladesh, 2020, 17.
|
| [3] |
KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
|
| [4] |
RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
|
| [5] |
檀盼龙, 吴小兵, 张晓宇. 基于声呐图像的水下目标识别研究综述[J]. 数字海洋与水下攻防, 2022, 5(4): 342–353. doi: 10.19838/j.issn.2096-5753.2022.04.010
TAN Panlong, WU Xiaobing, and ZHANG Xiaoyu. Review on underwater target recognition based on sonar image[J]. Digital Ocean &Underwater Warfare, 2022, 5(4): 342–353. doi: 10.19838/j.issn.2096-5753.2022.04.010
|
| [6] |
ZOU Zhengxia, CHEN Keyan, SHI Zhenwei, et al. Object detection in 20 years: A survey[EB/OL]. https://arxiv.org/pdf/1905.05055.pdf, 2019.
|
| [7] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3697–3708. doi: 10.11999/JEIT210790
|
| [8] |
ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022, 126: 103514. doi: 10.1016/j.dsp.2022.103514
|
| [9] |
林森, 赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展, 2020, 57(6): 060002. doi: 10.3788/LOP57.060002
LIN Sen and ZHAO Ying. Review on key technologies of target exploration in underwater optical images[J]. Laser &Optoelectronics Progress, 2020, 57(6): 060002. doi: 10.3788/LOP57.060002
|
| [10] |
FAYAZ S, PARAH S A, and QURESHI G J. Underwater object detection: Architectures and algorithms-a comprehensive review[J]. Multimedia Tools and Applications, 2022, 81(15): 20871–20916. doi: 10.1007/s11042-022-12502-1
|
| [11] |
GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
|
| [12] |
REN Shaoqing, HE Kaiming, GIRSHICK R B, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
|
| [13] |
HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386–397. doi: 10.1109/TPAMI.2018.2844175
|
| [14] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
|
| [15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
|
| [16] |
REDMON J and FARHADI A. YOLOv3: An Incremental Improvement[EB/OL].https://arxiv.org/pdf/1804.02767.pdf, 2018.
|
| [17] |
BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL].https://arxiv.org/pdf/2004.10934.pdf, 2020.
|
| [18] |
DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 6568–6577.
|
| [19] |
TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 9626–9635.
|
| [20] |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 213–229.
|
| [21] |
CHEN Kai, WANG Jiaqi, PANG Jiangmiao, et al. MMDetection: Open MMLab detection toolbox and benchmark[EB/OL].https://arxiv.org/abs/1906.07155, 2019.
|
| [22] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
|
| [23] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
|
| [24] |
ZHU Xizhou, HU Han, LIN S, et al. Deformable ConvNets V2: More deformable, better results[C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9300–9308.
|
| [25] |
TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: An all-MLP architecture for vision[C/OL]. Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 24261–24272.
|
| [26] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002.
|
| [27] |
HOWARD A, SANDLER M, CHEN Bo, et al. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 1314–1324.
|
| [28] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
|
| [29] |
LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8759–8768.
|
| [30] |
ZONG Zhuofan, CAO Qianggang, and LENG Biao. RCNet: Reverse feature pyramid and cross-scale shift network for object detection[C]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 5637–5645.
|
| [31] |
WANG Ning, GAO Yang, CHEN Hao, et al. NAS-FCOS: Fast neural architecture search for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11940–11948.
|
| [32] |
WANG Jiaqi, ZHANG Wenwei, CAO Yuhang, et al. Side-aware boundary localization for more precise object detection[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 403–419.
|
| [33] |
WU Yue, CHEN Yinpeng, YUAN Lu, et al. Rethinking classification and localization for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10183–10192.
|
| [34] |
FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: Task-aligned one-stage object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3490–3499.
|
| [35] |
LIN T Y, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826
|
| [36] |
PANG Jiangmiao, CHEN Kai, SHI Jianping, et al. Libra R-CNN: Towards balanced learning for object detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 821–830.
|
| [37] |
MA Yuchen, LIU Songtao, LI Zeming, et al. IQDet: Instance-wise quality distribution sampling for object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 1717–1725.
|
| [38] |
ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9756–9765.
|
| [39] |
GE Zheng, LIU Songtao, LI Zeming, et al. OTA: Optimal transport assignment for object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 303–312.
|
| [40] |
OKSUZ K, CAM B C, AKBAS E, et al. Rank & sort loss for object detection and instance segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 2989–2998.
|
| [41] |
ZHANG Hongkai, CHANG Hong, MA Bingpeng, et al. Dynamic R-CNN: Towards high quality object detection via dynamic training[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 260–275.
|
| [42] |
GAO Yan, WANG Qimeng, TANG Xu, et al. Decoupled IoU regression for object detection[C]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 5628–5636.
|
| [43] |
GUO M, HAQUE A, HUANG Dean, et al. Dynamic task prioritization for multitask learning[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 282–299.
|
| [44] |
CAI Qi, PAN Yingwei, WANG Yu, et al. Learning a unified sample weighting network for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14161–14170.
|
| [45] |
LI Xiang, WANG Wenhai, HU Xiaolin, et al. Generalized focal loss V2: Learning reliable localization quality estimation for dense object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11627–11636.
|
| [46] |
BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS - Improving object detection with one line of code[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5562–5570.
|
| [47] |
LUO Zekun, FANG Zheng, ZHENG Sixiao, et al. NMS-loss: Learning with non-maximum suppression for crowded pedestrian detection[C]. 2021 International Conference on Multimedia Retrieval, Taipei, China, 2021: 481–485.
|
| [48] |
SUN Peize, ZHANG Rufeng, JIANG Yi, et al. Sparse R-CNN: End-to-end object detection with learnable proposals[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14449–14458.
|
| [49] |
WANG Jianfeng, SONG Lin, LI Zeming, et al. End-to-end object detection with fully convolutional network[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 15844–15853.
|
| [50] |
CAO Xiang, LUO Yihao, XIAO Yi, et al. Blind image super-resolution based on prior correction network[J]. Neurocomputing, 2021, 463: 525–534. doi: 10.1016/j.neucom.2021.07.070
|
| [51] |
EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4
|
| [52] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
|
| [53] |
URPC. Underwater robot professional contest[EB/OL]. http://www.urpc.org.cn/index.html, 2022.
|
| [54] |
LIU Risheng, FAN Xin, ZHU Ming, et al. Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(12): 4861–4875. doi: 10.1109/TCSVT.2019.2963772
|
| [55] |
LIU Chongwei, WANG Zhihui, WANG Shijie, et al. A new dataset, Poisson GAN and AquaNet for underwater object grabbing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(5): 2831–2844. doi: 10.1109/TCSVT.2021.3100059
|
| [56] |
FAN Baojie, CHEN Wei, CONG Yang, et al. Dual refinement underwater object detection network[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 275–291.
|
| [57] |
LIU Chongwei, LI Haojie, WANG Shuchang, et al. A dataset and benchmark of underwater object detection for robot picking[C]. 2021 IEEE International Conference on Multimedia & Expo Workshops, Shenzhen, China, 2021: 1–6.
|
| [58] |
Fish4Knowledge.https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/index.html, 2013.
|
| [59] |
PEDERSEN M, HAURUM J B, GADE R, et al. Detection of marine animals in a new underwater dataset with varying visibility[C]. 2019 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, USA, 2019: 18–26.
|
| [60] |
FULTON M, HONG J, ISLAM M J, et al. Robotic detection of marine litter using deep visual detection models[C]. 2019 International Conference on Robotics and Automation, Montreal, Canada, 2019: 5752–5758.
|
| [61] |
HONG J, FULTON M, and SATTAR J. TrashCan: A semantically-segmented dataset towards visual detection of marine debris[EB/OL].https://arxiv.org/abs/2007.08097, 2020.
|
| [62] |
ISLAM M J, EDGE C, and XIAO Yuyang. Semantic segmentation of underwater imagery: Dataset and benchmark[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020: 1769–1776.
|
| [63] |
LU Huimin, LI Yujie, UEMURA T, et al. FDCNet: Filtering deep convolutional network for marine organism classification[J]. Multimedia Tools and Applications, 2018, 77(17): 21847–21860. doi: 10.1007/s11042-017-4585-1
|
| [64] |
LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2020, 29: 4376–4389. doi: 10.1109/TIP.2019.2955241
|
| [65] |
JIAN Muwei, QI Qiang, YU Hui, et al. The extended marine underwater environment database and baseline evaluations[J]. Applied Soft Computing, 2019, 80: 425–437. doi: 10.1016/j.asoc.2019.04.025
|
| [66] |
KEZEBOU L, OLUDARE V, PANETTA K, et al. Underwater object tracking benchmark and dataset[C]. 2019 IEEE International Symposium on Technologies for Homeland Security, Woburn, USA, 2019: 1–6.
|
| [67] |
PANETTA K, KEZEBOU L, OLUDARE V, et al. Comprehensive underwater object tracking benchmark dataset and underwater image enhancement with GAN[J]. IEEE Journal of Oceanic Engineering, 2022, 47(1): 59–75. doi: 10.1109/JOE.2021.3086907
|
| [68] |
SUNG M, YU S C, and GIRDHAR Y. Vision based real-time fish detection using convolutional neural network[C]. OCEANS 2017, Aberdeen, UK, 2017: 1–6.
|
| [69] |
CHRISTENSEN J H, MOGENSEN L V, GALEAZZI R, et al. Detection, localization and classification of fish and fish species in poor conditions using convolutional neural networks[C]. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Porto, Portugal, 2018: 1–6.
|
| [70] |
MANDAL R, CONNOLLY R M, SCHLACHER T A, et al. Assessing fish abundance from underwater video using deep neural networks[C]. 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 2018: 1–6.
|
| [71] |
KNAUSGÅRD K M, WIKLUND A, SØRDALEN T K, et al. Temperate fish detection and classification: A deep learning based approach[J]. Applied Intelligence, 2022, 52(6): 6988–7001. doi: 10.1007/s10489-020-02154-9
|
| [72] |
叶赵兵, 段先华, 赵楚. 改进YOLOv3-SPP水下目标检测研究[J]. 计算机工程与应用, 2023, 59(6): 231–240. doi: 10.3778/j.issn.1002-8331.2204-0264
YE Zhaobing, DUAN Xianhua, and ZHAO Chu. Research on underwater target detection by improved YOLOv3-SPP[J]. Computer Engineering and Applications, 2023, 59(6): 231–240. doi: 10.3778/j.issn.1002-8331.2204-0264
|
| [73] |
张艳, 李星汕, 孙叶美, 等. 基于通道注意力与特征融合的水下目标检测算法[J]. 西北工业大学学报, 2022, 40(2): 433–441. doi: 10.3969/j.issn.1000-2758.2022.02.025
ZHANG Yan, LI Xingshan, SUN Yemei, et al. Underwater object detection algorithm based on channel attention and feature fusion[J]. Journal of Northwestern Polytechnical University, 2022, 40(2): 433–441. doi: 10.3969/j.issn.1000-2758.2022.02.025
|
| [74] |
王蓉蓉, 蒋中云. 基于改进CenterNet的水下目标检测算法[J]. 激光与光电子学进展, 2023, 60(2): 0215001.
WANG Rongrong and JIANG Zhongyun. Underwater object detection algorithm based on improved CenterNet[J]. Laser &Optoelectronics Progress, 2023, 60(2): 0215001.
|
| [75] |
蔡达, 范保杰. 基于空间特征选择的水下目标检测方法[J]. 信息与控制, 2022, 51(2): 214–222. doi: 10.13976/j.cnki.xk.2022.1597
CAI Da and FAN Baojie. Spatial feature selection for underwater object detection[J]. Information and Control, 2022, 51(2): 214–222. doi: 10.13976/j.cnki.xk.2022.1597
|
| [76] |
喻明毫, 高建瓴. 轻量级水下目标检测器LUDet[J]. 计算机工程与科学, 2022, 44(9): 1638–1645. doi: 10.3969/j.issn.1007-130X.2022.09.014
YU Minghao and GAO Jianling. LUDet: A lightweight underwater object detector[J]. Computer Engineering &Science, 2022, 44(9): 1638–1645. doi: 10.3969/j.issn.1007-130X.2022.09.014
|
| [77] |
LIANG Xutao and SONG Pinhao. Excavating RoI attention for underwater object detection[C]. 2022 IEEE International Conference on Image Processing, Bordeaux, France, 2022: 2651–2655.
|
| [78] |
LIN Weihong, ZHONG Jiaxing, LIU Shan, et al. ROIMIX: Proposal-fusion among multiple images for underwater object detection[C]. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2022: 2588–2592.
|
| [79] |
史朋飞, 韩松, 倪建军, 等. 结合数据增强和改进YOLOv4的水下目标检测算法[J]. 电子测量与仪器学报, 2022, 36(3): 113–121. doi: 10.13382/j.jemi.B2104168
SHI Pengfei, HAN Song, NI Jianjun, et al. Underwater object detection algorithm combining data enhancement and improved YOLOv4[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(3): 113–121. doi: 10.13382/j.jemi.B2104168
|
| [80] |
LI Xiuyuan, LI Fengchao, YU Jiangang, et al. A high-precision underwater object detection based on joint self-supervised deblurring and improved spatial transformer network[EB/OL].https://arxiv.org/abs/2203.04822, 2022.
|
| [81] |
CHEN Long, LIU Zhihua, TONG Lei, et al. Underwater object detection using Invert Multi-Class Adaboost with deep learning[C]. 2020 International Joint Conference on Neural Networks, Glasgow, UK, 2020: 1–8.
|
| [82] |
CHEN Long, ZHOU Feixiang, WANG Shengke, et al. SWIPENET: Object detection in noisy underwater scenes[J]. Pattern Recognition, 2022, 132: 108926. doi: 10.1016/j.patcog.2022.108926
|
| [83] |
SONG Pinhao, LI Pengteng, DAI Linhui, et al. Boosting R-CNN: Reweighting R-CNN samples by RPN's error for underwater object detection[J]. Neurocomputing, 2023, 530: 150–164. doi: 10.1016/j.neucom.2023.01.088
|
| [84] |
Sound Metrics. Image Gallery[EB/OL]. http://www.soundmetrics.com/Image-Gallery, 2020.
|
| [85] |
SINGH D and VALDENEGRO-TORO M. The marine debris dataset for forward-looking sonar semantic segmentation[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops, Montreal, Canada, 2021: 3734–3742.
|
| [86] |
BARNGROVER C, KASTNER R, and BELONGIE S. Semisynthetic versus real-world sonar training data for the classification of mine-like objects[J]. IEEE Journal of Oceanic Engineering, 2015, 40(1): 48–56. doi: 10.1109/JOE.2013.2291634
|
| [87] |
HUO Guanying, WU Ziyin, and LI Jiabiao. Underwater object classification in Sidescan sonar images using deep transfer learning and semisynthetic training data[J]. IEEE Access, 2020, 8: 47407–47418. doi: 10.1109/ACCESS.2020.2978880
|
| [88] |
周彦, 陈少昌, 吴可, 等. SCTD1.0: 声呐常见目标检测数据集[J]. 计算机科学, 2021, 48(S2): 334–339. doi: 10.11896/jsjkx.210100138
ZHOU Yan, CHEN Shaochang, WU Ke, et al. SCTD1.0: Sonar common target detection dataset[J]. Computer Science, 2021, 48(S2): 334–339. doi: 10.11896/jsjkx.210100138
|
| [89] |
VALDENEGRO-TORO M. Object recognition in forward-looking sonar images with convolutional neural networks[C]. OCEANS 2016 MTS/IEEE Monterey, Monterey, USA, 2016: 1–6.
|
| [90] |
VALDENEGRO-TORO M. End-to-end object detection and recognition in forward-looking sonar images with convolutional neural networks[C]. 2016 IEEE/OES Autonomous Underwater Vehicles, Tokyo, Japan, 2016: 144–150.
|
| [91] |
PALOMERAS N, FURFARO T, WILLIAMS D P, et al. Automatic target recognition for mine countermeasure missions using forward-looking sonar data[J]. IEEE Journal of Oceanic Engineering, 2022, 47(1): 141–161. doi: 10.1109/JOE.2021.3103269
|
| [92] |
ZHOU Tian, SI Jikun, WANG Luyao, et al. Automatic detection of underwater small targets using forward-looking sonar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4207912. doi: 10.1109/TGRS.2022.3181417
|
| [93] |
GEBHARDT D, PARIKH K, DZIECIUCH I, et al. Hunting for naval mines with deep neural networks[C]. OCEANS 2017, Anchorage, UK, 2017: 1–5.
|
| [94] |
HOANG T, DALTON K S, GERG I D, et al. Domain enriched deep networks for munition detection in underwater 3D sonar imagery[C]. 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 815–818.
|
| [95] |
FAN Zhimiao, XIA Weijie, LIU Xue, et al. Detection and segmentation of underwater objects from forward-looking sonar based on a modified Mask RCNN[J]. Signal, Image and Video Processing, 2021, 15(6): 1135–1143. doi: 10.1007/s11760-020-01841-x
|
| [96] |
FAN Xinnan, LU Liang, SHI Pengfei, et al. A novel sonar target detection and classification algorithm[J]. Multimedia Tools and Applications, 2022, 81(7): 10091–10106. doi: 10.1007/s11042-022-12054-4
|
| [97] |
ZHANG Haoting, TIAN Mei, SHAO Gaoping, et al. Target detection of forward-looking sonar image based on improved YOLOv5[J]. IEEE Access, 2022, 10: 18023–18034. doi: 10.1109/ACCESS.2022.3150339
|
| [98] |
ZHU Xingyu, LIANG Yingshuo, ZHANG Jianlei, et al. STAFNet: Swin transformer based anchor-free network for detection of forward-looking sonar imagery[C]. The 2022 International Conference on Multimedia Retrieval, Newark, USA, 2022: 443–450.
|
| [99] |
WANG Yanmei, LIU Jiaxin, YU Siquan, et al. Underwater object detection based on YOLO-v3 network[C]. 2021 IEEE International Conference on Unmanned Systems, Beijing, China, 2021: 571–575.
|
| [100] |
LI Jiawen and CAO Xiang. Target recognition and detection in side-scan sonar images based on YOLO v3 model[C]. 41st Chinese Control Conference, Hefei, China, 2022: 7186–7190.
|
| [101] |
陈禹蒲, 马晓川, 李璇. 基于YOLOv3锚框优化的侧扫声呐图像目标检测[J]. 信号处理, 2022, 38(11): 2359–2371. doi: 10.16798/j.issn.1003-0530.2022.11.013
CHEN Yupu, MA Xiaochuan, and LI Xuan. Target detection in side scan sonar images based on YOLOv3 anchor boxes optimization[J]. Journal of Signal Processing, 2022, 38(11): 2359–2371. doi: 10.16798/j.issn.1003-0530.2022.11.013
|
| [102] |
YU Yongcan, ZHAO Jianhu, GONG Quanhua, et al. Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOv5[J]. Remote Sensing, 2021, 13(18): 3555. doi: 10.3390/rs13183555
|
| [103] |
FU Shunan, XU Feng, LIU Jia, et al. Underwater small object detection in side-scan sonar images based on improved YOLOv5[C]. 3rd International Conference on Geology, Mapping and Remote Sensing, Zhoushan, China, 2022: 446–453.
|
| [104] |
李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的合成孔径声呐图像水下多尺度目标轻量化检测模型[J]. 电子与信息学报, 2021, 43(10): 2854–2862. doi: 10.11999/JEIT201042
LI Baoqi, HUANG Haining, LIU Jiyuan, et al. Synthetic aperture sonar underwater multi-scale target efficient detection model based on improved single shot detector[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2854–2862. doi: 10.11999/JEIT201042
|
| [105] |
ZHANG Peng, TANG Jinsong, ZHONG Heping, et al. Self-trained target detection of radar and sonar images using automatic deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4701914. doi: 10.1109/TGRS.2021.3096011
|
| [106] |
LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6.
|
| [107] |
WU Meihan, WANG Qi, RIGALL e, et al. ECNet: Efficient convolutional networks for side scan sonar image segmentation[J]. Sensors, 2019, 19(9): 2009. doi: 10.3390/s19092009
|
| [108] |
SLEDGE I J, EMIGH M S, KING J L, et al. Target detection and segmentation in circular-scan synthetic aperture sonar images using Semisupervised convolutional encoder-decoders[J]. IEEE Journal of Oceanic Engineering, 2022, 47(4): 1099–1128. doi: 10.1109/JOE.2022.3152863
|
| [109] |
FUCHS L R, GÄLLSTRÖM A, and FOLKESSON J. Object recognition in forward looking sonar images using transfer learning[C]. 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Porto, Portugal, 2018, 1–6.
|
| [110] |
LEE S, PARK B, and KIM A. Deep learning from shallow dives: Sonar image generation and training for underwater object detection[EB/OL].https://arxiv.org/abs/1810.07990, 2018.
|
| [111] |
LOU Guanting, ZHENG Ronghao, LIU Meiqin, et al. Automatic target recognition in forward-looking sonar images using transfer learning[C]. Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–6.
|
| [112] |
ISOLA P, ZHU Junyan, ZHOU Tinghui, et al. Image-to-image translation with conditional adversarial networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5967–5976.
|
| [113] |
JEGOROVA M, KARJALAINEN A I, VAZQUEZ J, et al. Full-scale continuous synthetic sonar data generation with markov conditional generative adversarial networks[C]. 2020 IEEE International Conference on Robotics and Automation, Paris, France, 2020: 3168–3174.
|
| [114] |
凡志邈, 夏伟杰, 刘雪. 基于修正Cycle GAN的声呐图像库构建方法研究[J]. 声学技术, 2021, 40(6): 890–894. doi: 10.16300/j.cnki.1000-3630.2021.06.023
FAN Zhimiao, XIA Weijie, and LIU Xue. Modified CycleGAN based sonar image library construction[J]. Technical Acoustics, 2021, 40(6): 890–894. doi: 10.16300/j.cnki.1000-3630.2021.06.023
|
| [115] |
ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C] 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2242–2251.
|
| [116] |
盛子旗, 霍冠英. 样本仿真结合迁移学习的声呐图像水雷检测[J]. 智能系统学报, 2021, 16(2): 385–392. doi: 10.11992/tis.202101030
SHENG Ziqi and HUO Guanying. Detection of underwater mine target in sidescan sonar image based on sample simulation and transfer learning[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2): 385–392. doi: 10.11992/tis.202101030
|