Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHOU Xuefang, SUN Le, CHEN Weihao, ZHENG Ning. An Encryption Algorithm Based on Optical Chaos and Image Quotient and Residue Preprocessing[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4519-4529. doi: 10.11999/JEIT221332
Citation: ZHOU Xuefang, SUN Le, CHEN Weihao, ZHENG Ning. An Encryption Algorithm Based on Optical Chaos and Image Quotient and Residue Preprocessing[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4519-4529. doi: 10.11999/JEIT221332

An Encryption Algorithm Based on Optical Chaos and Image Quotient and Residue Preprocessing

doi: 10.11999/JEIT221332
Funds:  The National Natural Science Foundation of China (61705055), The Key Research and Development Program of Zhejiang Province (2019C01G1121168), The Key Laboratory Foundation of Data Storage and Transmission Technology of Zhejiang Province
  • Received Date: 2022-10-24
  • Rev Recd Date: 2023-02-20
  • Available Online: 2023-03-14
  • Publish Date: 2023-12-26
  • With the development of modern science and technology, people have higher and higher requirements for the security of image information transmission, and the image encryption scheme based on chaos theory has attracted more and more attention. In this paper, a novel optical chaotic image encryption transmission system and a “self-encryption” algorithm for images are proposed and demonstrated. The Master Laser (ML) of the system is injected into the other three Semiconductor Lasers (SLs) respectively after full-optical feedback, then three synchronous chaotic sequences are generated. Before encrypting the image, the plaintext image is preprocessed, and two images are obtained, one is the image after the quotient of the plain image, the other is the image after the redundancy of the plain image. The chaotic sequence of the sender is used to encrypt, steganograph and spread the two preprocessed images for many times, and then the ciphertext image is obtained. The experimental results show that the pixel values of the ciphertext images obtained in this paper are evenly distributed, the correlation between each pixel is broken, and both NPCR and UACI are close to the ideal value. The image preprocessing method proposed in this paper can effectively make the image pixel value more concentrated, more uniform distribution. Combining with the optical chaos to encrypt the image, it greatly improves the security of the transmitted image.
  • loading
  • [1]
    LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [2]
    梁颖, 张绍武. 位级同步置乱扩散和像素级环形扩散图像加密算法[J]. 中国图象图形学报, 2018, 23(6): 814–826. doi: 10.11834/jig.170433

    LIANG Ying and ZHANG Shaowu. Image encryption algorithm based on bit-level synchronous permutation diffusion and pixel-level annular diffusion[J]. Journal of Image and Graphics, 2018, 23(6): 814–826. doi: 10.11834/jig.170433
    [3]
    LIN Hairong, WANG Chunhua, CUI Li, et al. Brain-like initial-boosted hyperchaos and application in biomedical image encryption[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8839–8850. doi: 10.1109/TII.2022.3155599
    [4]
    JIANG Xiao, XIAO Ying, XIE Yiyuan, et al. Exploiting optical chaos for double images encryption with compressive sensing and double random phase encoding[J]. Optics Communications, 2021, 484: 126683. doi: 10.1016/j.optcom.2020.126683
    [5]
    HAKEN H. Analogy between higher instabilities in fluids and lasers[J]. Physics Letters A, 1975, 53(1): 77–78. doi: 10.1016/0375-9601(75)90353-9
    [6]
    义理林, 柯俊翔. 混沌保密光通信研究进展[J]. 通信学报, 2020, 41(3): 168–181. doi: 10.11959/j.issn.1000-436x.2020008

    YI Lilin and KE Junxiang. Research progress of chaotic secure optical communication[J]. Journal on Communications, 2020, 41(3): 168–181. doi: 10.11959/j.issn.1000-436x.2020008
    [7]
    郑亮, 李秀玲, 王瑛剑. 半导体激光器混沌通信研究进展[J]. 光通信技术, 2020, 44(1): 1–5. doi: 10.13921/j.cnki.issn1002-5561.2020.01.001

    ZHENG Liang, LI Xiuling, and WANG Yingjian. Research progress on chaotic communication of semiconductor lasers[J]. Optical Communication Technology, 2020, 44(1): 1–5. doi: 10.13921/j.cnki.issn1002-5561.2020.01.001
    [8]
    XIE Yiyuan, LI Jiachao, KONG Zhoufan, et al. Exploiting optics chaos for image encryption-then-transmission[J]. Journal of Lightwave Technology, 2016, 34(22): 5101–5109. doi: 10.1109/JLT.2016.2606121
    [9]
    SIVAPRAKASAM S and SHORE K A. Signal masking for chaotic optical communication using external-cavity diode lasers[J]. Optics Letters, 1999, 24(17): 1200–1202. doi: 10.1364/OL.24.001200
    [10]
    FU Xingquan, LIU Bocheng, XIE Yiyuan, et al. Image encryption-then-transmission using DNA encryption algorithm and the double chaos[J]. IEEE Photonics Journal, 2018, 10(3): 3900515. doi: 10.1109/JPHOT.2018.2827165
    [11]
    LI Jiafu, XIANG Shuiying, WANG Haoning, et al. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers[J]. Optics and Lasers in Engineering, 2018, 102: 170–180. doi: 10.1016/j.optlaseng.2017.11.001
    [12]
    WU Ting, LI Qiliang, BAO Xiaobin, et al. Time-delay signature concealment in chaotic secure communication system combining optical intensity with phase feedback[J]. Optics Communications, 2020, 475: 126042. doi: 10.1016/j.optcom.2020.126042
    [13]
    GHANBARI-GHALEHJOUGHI H, ESLAMI M, AHMADI-KANDJANI S, et al. Multiple layer encryption and steganography via multi-channel ghost imaging[J]. Optics and Lasers in Engineering, 2020, 134: 106227. doi: 10.1016/j.optlaseng.2020.106227
    [14]
    DONG Wenlong, LI Qiliang, and TANG Yiwen. Image encryption-then-transmission combining random sub-block scrambling and loop DNA algorithm in an optical chaotic system[J]. Chaos, Solitons & Fractals, 2021, 153: 111539. doi: 10.1016/j.chaos.2021.111539
    [15]
    LANG R and KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355. doi: 10.1109/JQE.1980.1070479
    [16]
    PETERS-FLYNN S, SPENCER P S, SIVAPRAKASAM S, et al. Identification of the optimum time-delay for chaos synchronization regimes of semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 2006, 42(4): 427–434. doi: 10.1109/JQE.2006.872312
    [17]
    刘劲杨, 周雪芳, 毕美华, 等. 光混沌保密通信系统在MATLAB与OptiSystem中的协同实现[J]. 光电工程, 2021, 48(9): 210146. doi: 10.12086/oee.2021.210146

    LIU Jinyang, ZHOU Xuefang, BI Meihua, et al. Co-simulation of optical chaotic secure communication systems in MATLAB and OptiSystem[J]. Opto-Electronic Engineering, 2021, 48(9): 210146. doi: 10.12086/oee.2021.210146
    [18]
    LI Zhen, PENG Changgen, TAN Weijie, et al. An efficient plaintext-related chaotic image encryption scheme based on compressive sensing[J]. Sensors, 2021, 21(3): 758. doi: 10.3390/S21030758
    [19]
    SHA Yuwen, BO Sun, YANG Chenxiao, et al. A chaotic image encryption scheme based on genetic central dogma and KMP method[J]. International Journal of Bifurcation and Chaos, 2022, 32(12): 2250186. doi: 10.1142/S0218127422501863
    [20]
    ZHAO Chaofeng and REN Haipeng. Image encryption based on hyper-chaotic multi-attractors[J]. Nonlinear Dynamics, 2020, 100(1): 679–698. doi: 10.1007/s11071-020-05526-5
    [21]
    HUA Zhongyun, ZHOU Yicong, PUN C M, et al. 2D Sine Logistic modulation map for image encryption[J]. Information Sciences, 2015, 297: 80–94. doi: 10.1016/j.ins.2014.11.018
    [22]
    VIDHYA R and BRINDHA M. A novel dynamic chaotic image encryption using butterfly network topology based diffusion and decision based permutation[J]. Multimedia Tools and Applications, 2020, 79(41): 30281–30310. doi: 10.1007/s11042-020-09462-9
    [23]
    SEYEDZADEH S M and MIRZAKUCHAKI S. A fast color image encryption algorithm based on coupled two-dimensional piecewise chaotic map[J]. Signal Processing, 2012, 92(5): 1202–1215. doi: 10.1016/j.sigpro.2011.11.004
    [24]
    SHI Hang, YAN Dengwei, WANG Lidan, et al. A novel memristor-based chaotic image encryption algorithm with Hash process and S-box[J]. The European Physical Journal Special Topics, 2022, 231(3): 465–480. doi: 10.1140/epjs/s11734-021-00365-w
    [25]
    KHAIRULLAH M K, ALKAHTANI A A, BIN BAHARUDDIN M Z, et al. Designing 1D chaotic maps for fast chaotic image encryption[J]. Electronics, 2021, 10(17): 2116. doi: 10.3390/ELECTRONICS10172116
    [26]
    ZHANG Xuncai, WU Tao, WANG Yanfeng, et al. A novel chaotic image encryption algorithm based on Latin square and random shift[J]. Computational Intelligence and Neuroscience, 2021, 2021: 2091053. doi: 10.1155/2021/2091053
    [27]
    YAN Xiaopeng, WANG Xingyuan, and XIAN Yongjin. Chaotic image encryption algorithm based on arithmetic sequence scrambling model and DNA encoding operation[J]. Multimedia Tools and applications, 2021, 80(7): 10949–10983. doi: 10.1007/S11042-020-10218-8
    [28]
    VIDHYA R and BRINDHA M. A novel conditional butterfly network topology based chaotic image encryption[J]. Journal of Information Security and Applications, 2020, 52: 102484. doi: 10.1016/j.jisa.2020.102484
    [29]
    WEN Wenying, HONG Yukun, FANG Yuming, et al. A visually secure image encryption scheme based on semi-tensor product compressed sensing[J]. Signal Processing, 2020, 173: 107580. doi: 10.1016/j.sigpro.2020.107580
    [30]
    LI Ming, WANG Mengdie, FAN Haiju, et al. A novel plaintext-related chaotic image encryption scheme with no additional plaintext information[J]. Chaos, Solitons & Fractals, 2022, 158: 111989. doi: 10.1016/j.chaos.2022.111989
    [31]
    ZHANG Xiaoqiang and YAN Xuangang. Adaptive chaotic image encryption algorithm based on RNA and pixel depth[J]. Electronics, 2021, 10(15): 1770. doi: 10.3390/electronics10151770
    [32]
    SHAKIBA A. A novel randomized bit-level two-dimensional hyperchaotic image encryption algorithm[J]. Multimedia Tools and Applications, 2020, 79(43/44): 32575–32605. doi: 10.1007/s11042-020-09434-z
    [33]
    CHENG Guangfeng, WANG Chunhua, and XU Cong. A novel hyper-chaotic image encryption scheme based on quantum genetic algorithm and compressive sensing[J]. Multimedia Tools and Applications, 2020, 79(39/40): 29243–29263. doi: 10.1007/s11042-020-09542-w
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (484) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return