Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG Shuailong, LI Gong, LI Fenggang, XU Bingrui, LI Hang, FU Rongxin. Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315
Citation: ZHANG Shuailong, LI Gong, LI Fenggang, XU Bingrui, LI Hang, FU Rongxin. Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4566-4575. doi: 10.11999/JEIT221315

Optoelectronic Tweezers — A Versatile Micro/Nano Operation Technique

doi: 10.11999/JEIT221315
Funds:  The National Natural Science Foundation of China (62103050, 62105177, 21904008), The Recruitment Program of Global Experts and National Special Support Plan for High-level Talents
  • Received Date: 2022-10-19
  • Rev Recd Date: 2023-01-16
  • Available Online: 2023-02-22
  • Publish Date: 2023-12-26
  • OptoElectronic Tweezer (OET) is a micro-scale optical manipulation technology based on photoinduced electrophoretic effect. It can accurately control small targets in the complex environment of fluid field, photoelectric field and biological force field, and has important applications to cell operation, micromechanical system and other fields. Optoelectronic tweezers technology can be used alone or in conjunction with other technologies, and has been widely used. To date, research based on optoelectronic tweezers has focused on manipulation, assembly, and synthesis of micro and nanomaterials; manipulation, isolation, and analysis of individual cells/molecules; analysis and acquisition of cell intrinsic properties; electroporation, fusion, and lysis of cells; preparation of cell-encapsulated biomaterials and biological structures; development of optical fluid devices for fluid transport. These works demonstrate the superior performance and unique versatility and flexibility of the optoelectronic tweezers technology. The existing application of optoelectronic tweezers technology are systematically presented in the paper and the application prospect, limitation and development trend of this technology are summarised.
  • loading
  • [1]
    LI Jinxing, DE ÁVILA B E F, GAO Wei, et al. Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification[J]. Science Robotics, 2017, 2(4): eaam6431. doi: 10.1126/scirobotics.aam6431
    [2]
    ZHANG Yong, CHEN B K, LIU Xinyu, et al. Autonomous robotic pick-and-place of microobjects[J]. IEEE Transactions on Robotics, 2009, 26(1): 200–207. doi: 10.1109/TRO.2009.2034831
    [3]
    ZHU Wei, LI Jinxing, LEONG Y J, et al. 3D-printed artificial microfish[J]. Advanced Materials, 2015, 27(30): 4411–4417. doi: 10.1002/adma.201501372
    [4]
    XU Xiaobin, LIU Chao, KIM K, et al. Electric-driven rotation of silicon nanowires and silicon nanowire motors[J]. Advanced Functional Materials, 2014, 24(30): 4843–4850. doi: 10.1002/adfm.201303505
    [5]
    XIE Hui, SUN Mengmeng, FAN Xinjian, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4(28): eaav8006. doi: 10.1126/scirobotics.aav8006
    [6]
    WANG Wei, LI Sixing, MAIR L, et al. Acoustic propulsion of nanorod motors inside living cells[J]. Angewandte Chemie International Edition, 2014, 53(12): 3201–3204. doi: 10.1002/anie.201309629
    [7]
    PALIMA D and GLÜCKSTAD J. Gearing up for optical microrobotics: Micromanipulation and actuation of synthetic microstructures by optical forces[J]. Laser & Photonics Reviews, 2013, 7(4): 478–494. doi: 10.1002/lpor.201200030
    [8]
    ASHKIN A and DZIEDZIC J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517–1520. doi: 10.1126/science.3547653
    [9]
    WU M C. Optoelectronic tweezers[J]. Nature Photonics, 2011, 5(6): 322–324. doi: 10.1038/nphoton.2011.98
    [10]
    VALLEY J K, OHTA A T, HSAN-YIN H, et al. Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(6): 424–431. doi: 10.1109/TBCAS.2009.2031329
    [11]
    LIANG Shuzhang, GAN Chunyuan, DAI Yuguo, et al. Interaction between positive and negative dielectric microparticles/microorganism in optoelectronic tweezers[J]. Lab on A Chip, 2021, 21(22): 4379–4389. doi: 10.1039/D1LC00610J
    [12]
    VALLEY J K, NEALE S, HSU H Y, et al. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation[J]. Lab on A Chip, 2009, 9(12): 1714–1720. doi: 10.1039/b821678a
    [13]
    HSIAO Y C, WANG C H, LEE W B, et al. Automatic cell fusion via optically-induced dielectrophoresis and optically-induced locally-enhanced electric field on a microfluidic chip[J]. Biomicrofluidics, 2018, 12(3): 034108. doi: 10.1063/1.5028158
    [14]
    ZHAO Yuliang, LIANG Wenfeng, ZHANG Guanglie, et al. Distinguishing cells by their first-order transient motion response under an optically induced dielectrophoretic force field[J]. Applied Physics Letters, 2013, 103(18): 183702. doi: 10.1063/1.4827300
    [15]
    CHEN Y S, LAI C P K, CHEN C, et al. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform[J]. Lab on A Chip, 2021, 21(8): 1475–1483. doi: 10.1039/D1LC00093D
    [16]
    PEI Shaoning, VALLEY J K, WANG Yilun, et al. Distributed circuit model for multi-color light-actuated opto-electrowetting microfluidic device[J]. Journal of Lightwave Technology, 2015, 33(16): 3486–3493. doi: 10.1109/JLT.2015.2405076
    [17]
    Berkeley Lights[EB/OL]. https://www.berkeleylights.com/systems/beacon/, 2022.
    [18]
    CHO H, GONZALES-WARTZ K K, HUANG Deli, et al. Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern[J]. Science Translational Medicine, 2021, 13(616): eabj5413. doi: 10.1126/scitranslmed.abj5413
    [19]
    ZHANG Shuailong, LI Weizhen, ELSAYED M, et al. Integrated assembly and photopreservation of topographical micropatterns[J]. Small, 2021, 17(37): 2103702. doi: 10.1002/smll.202103702
    [20]
    ZHANG Shuailong, SCOTT E Y, SINGH J, et al. The optoelectronic microrobot: A versatile toolbox for micromanipulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(30): 14823–14828. doi: 10.1073/pnas.1903406116
    [21]
    ZHANG Shuailong, ELSAYED M, PENG Ran, et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers[J]. Nature Communications, 2021, 12: 5349. doi: 10.1038/s41467-021-25582-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (599) PDF downloads(149) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return