Advanced Search
Volume 45 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHU Guangyu, SUN Xinni, YANG Rongzheng, LIU Kanglin, WEI Yun, WU Bo. Intrinsic Mode Decomposition and Combined Deep Learning Prediction of Urban Rail Transit Passenger Flow at Variable Time Scales[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4421-4430. doi: 10.11999/JEIT221300
Citation: ZHU Guangyu, SUN Xinni, YANG Rongzheng, LIU Kanglin, WEI Yun, WU Bo. Intrinsic Mode Decomposition and Combined Deep Learning Prediction of Urban Rail Transit Passenger Flow at Variable Time Scales[J]. Journal of Electronics & Information Technology, 2023, 45(12): 4421-4430. doi: 10.11999/JEIT221300

Intrinsic Mode Decomposition and Combined Deep Learning Prediction of Urban Rail Transit Passenger Flow at Variable Time Scales

doi: 10.11999/JEIT221300
Funds:  The Fundamental Research Funds for the Central Universities(2022JBZX024), The National Natural Science Foundation of China (62272036, 62173167, 62132003)
  • Received Date: 2022-10-14
  • Rev Recd Date: 2023-02-22
  • Available Online: 2023-03-13
  • Publish Date: 2023-12-26
  • Different operational states of urban rail transit usually correspond to different Intrinsic Mode Functions (IMFs) and time-scale characteristics in passenger flow time series. A combined deep learning prediction model for short-term passenger flow time series of subway is proposed based on the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Bidirectional Long Short Term Memory network (BiLSTM), including: mode decomposition of passenger flow time series based on the CEEMDAN algorithm. The sample entropy and hierarchical clustering are used respectively to analyze the complexity and similarity of IMFs. The IMFs are then classified, merged and reconstructed on this basis. The hyper-parameters of the model are optimized using the Tree-structured Parzen Estimator (TPE) in the Optuna framework, and the combined prediction model CEEMDAN-TPE-BiLSTM is established. Actual data are used to validate the model. The results show that the accuracy and validity indicators of the model all reach the optimum for passenger flow time series data with specific characteristics.
  • loading
  • [1]
    CHEN Enhui, YE Zhirui, WANG Chao, et al. Subway passenger flow prediction for special events using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1109–1120. doi: 10.1109/TITS.2019.2902405
    [2]
    RYU U, WANG Jian, KIM T, et al. Construction of traffic state vector using mutual information for short-term traffic flow prediction[J]. Transportation Research Part C:Emerging Technologies, 2018, 96: 55–71. doi: 10.1016/j.trc.2018.09.015
    [3]
    LIANG Shidong, MA Minghui, HE Shengxue, et al. Short-term passenger flow prediction in urban public transport: Kalman filtering combined k-Nearest Neighbor approach[J]. IEEE Access, 2019, 7: 120937–120949. doi: 10.1109/ACCESS.2019.2937114
    [4]
    WANG Xuemei, ZHANG Ning, ZHANG Yunlong, et al. Forecasting of short-term metro ridership with Support Vector Machine online model[J]. Journal of Advanced Transportation, 2018, 2018: 3189238. doi: 10.1155/2018/3189238
    [5]
    陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊C均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090

    CHEN Zhonghui, LING Xianyao, FENG Xinxin, et al. Short-term traffic state prediction approach based on FCM and random forest[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1879–1886. doi: 10.11999/JEIT171090
    [6]
    SUN Bo, SUN Tuo, and JIAO Pengpeng. Spatio-temporal segmented traffic flow prediction with ANPRS data based on improved XGBoost[J]. Journal of Advanced Transportation, 2021, 2021: 5559562. doi: 10.1155/2021/5559562
    [7]
    YANG Dan, CHEN Kairun, YANG Mengning, et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems, 2019, 13(10): 1475–1482. doi: 10.1049/iet-its.2018.5511
    [8]
    代亮, 梅洋, 钱超, 等. 基于生成对抗网络的大规模路网交通流预测算法[J]. 控制与决策, 2021, 36(12): 2937–2945. doi: 10.13195/j.kzyjc.2020.0333

    DAI Liang, MEI Yang, QIAN Chao, et al. Traffic flow forecasting algorithm for large-scale road network based on GAN[J]. Control and Decision, 2021, 36(12): 2937–2945. doi: 10.13195/j.kzyjc.2020.0333
    [9]
    秦超, 高晓光, 万开方. 深度卷积记忆网络时空数据模型[J]. 自动化学报, 2020, 46(3): 451–462. doi: 10.16383/j.aas.c180788

    QIN Chao, GAO Xiaoguang, and WAN Kaifang. Deep spatio-temporal convolutional long-short memory network[J]. Acta Automatica Sinica, 2020, 46(3): 451–462. doi: 10.16383/j.aas.c180788
    [10]
    曾诚, 吴佳媛, 罗霞. 城市轨道交通短时客流预测文献综述[J]. 铁道运输与经济, 2021, 43(8): 105–111,125. doi: 10.16668/j.cnki.issn.1003-1421.2021.08.17

    ZENG Cheng, WU Jiayuan, and LUO Xia. Literature review of short-term passenger flow forecast for urban rail transit[J]. Railway Transport and Economy, 2021, 43(8): 105–111,125. doi: 10.16668/j.cnki.issn.1003-1421.2021.08.17
    [11]
    殷礼胜, 唐圣期, 李胜, 等. 基于整合移动平均自回归和遗传粒子群优化小波神经网络组合模型的交通流预测[J]. 电子与信息学报, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073

    YIN Lisheng, TANG Shengqi, LI Sheng, et al. Traffic flow prediction based on hybrid model of auto-regressive integrated moving average and genetic particle swarm optimization wavelet neural network[J]. Journal of Electronics &Information Technology, 2019, 41(9): 2273–2279. doi: 10.11999/JEIT181073
    [12]
    ZHANG Lizong, ALHARBE N R, LUO Guangchun, et al. A hybrid forecasting framework based on support vector regression with a modified genetic algorithm and a random forest for traffic flow prediction[J]. Tsinghua Science and Technology, 2018, 23(4): 479–492. doi: 10.26599/tst.2018.9010045
    [13]
    寇唯. 基于数据稳定化处理的城市轨道交通短时客流预测研究[D]. [硕士论文], 北京交通大学, 2020.

    KOU Wei. Research on short-term passenger flow prediction of urban rail transit based on data stability processing[D]. [Master dissertation], Beijing Jiaotong University, 2020.
    [14]
    ZHANG Shuaichao, ZHOU Lingxiao, CHEN Xiqun, et al. Network-wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1132–1147. doi: 10.1111/mice.12575
    [15]
    WANG Jiaxuan, WANG Rui, and ZENG Xin. Short-term passenger flow forecasting using CEEMDAN meshed CNN-LSTM-attention model under wireless sensor network[J]. IET Communications, 2022, 16(10): 1253–1263. doi: 10.1049/cmu2.12350
    [16]
    沈琼. 城市轨道交通进站客流短时预测方法研究[D]. [硕士论文], 北京交通大学, 2019.

    SHEN Qiong. Study on short-term forecasting method for boarding passenger flows in urban rail transit[D]. [Master dissertation], Beijing Jiaotong University, 2019.
    [17]
    AKIBA T, SANO S, YANASE T, et al. Optuna: A next-generation hyperparameter optimization framework[C]. The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, USA, 2019: 2623–2631.
    [18]
    LACERDA P, BARROS B, ALBUQUERQUE C, et al. Hyperparameter optimization for COVID-19 pneumonia diagnosis based on chest CT[J]. Sensors, 2021, 21(6): 2174. doi: 10.3390/S21062174
    [19]
    黄宇, 高珊, 李其贤, 等. SCR脱硝系统的分数阶 ${\text{P}}{{\text{I}}^\lambda }{{\text{D}}^\mu }$参数优化控制[J]. 动力工程学报, 2022, 42(2): 122–128. doi: 10.19805/j.cnki.jcspe.2022.02.004

    HUANG Yu, GAO Shan, LI Qixian, et al. Optimal control of fractional ${\text{P}}{{\text{I}}^\lambda }{{\text{D}}^\mu }$ parameters of SCR denitration system[J]. Journal of Chinese Society of Power Engineering, 2022, 42(2): 122–128. doi: 10.19805/j.cnki.jcspe.2022.02.004
    [20]
    石庄彬, 张宁, 邵星杰. 城市轨道交通客流高峰持续时间预测方法[J]. 城市轨道交通研究, 2016, 19(7): 35–39. doi: 10.16037/j.1007-869x.2016.07.008

    SHI Zhuangbin, ZHANG Ning, and SHAO Xingjie. Prediction of passenger flow duration in urban rail transit peak hours[J]. Urban Mass Transit, 2016, 19(7): 35–39. doi: 10.16037/j.1007-869x.2016.07.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    Article Metrics

    Article views (496) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return